Correlates of motor planning and postsaccadic fixation in the macaque monkey lateral geniculate nucleus
Tóm tắt
There is significant controversy regarding the ability of the primate visual system to construct stable percepts from a never-ending stream of brief fixations and rapid saccadic eye movements. In this study, we examined the timing and occurrence of perisaccadic modulation of LGN single-unit activity in awake-behaving macaque monkeys while they made spontaneous saccades in the dark and made visually guided saccades to discrete stimuli located outside the receptive field. Our hypothesis was that the activity of LGN cells is modulated by efference copies of motor plans to produce saccadic eye movements and that this modulation depends neither on the presence of feedforward visual information nor on a corollary discharge of signals directing saccadic eye movements. On average, 25% of LGN cells demonstrated significant perisaccadic modulation. This modulation consisted of a moderate suppression of activity that began more than 100 ms prior to the initiation of a saccadic eye movement and continued beyond the termination of the saccadic eye movement. This suppression was followed by a large enhancement of activity after the eyes arrived at the next fixation. Although members of all three LGN relay cell classes (magnocellular, parvocellular, and koniocellular) demonstrated significant saccade-related suppression and enhancement of activity, more cells demonstrated postsaccadic enhancement (25%) than perisaccadic suppression (17%). In no case did the timing of the modulation coincide directly with saccade duration. The degree of modulation observed did not vary with LGN cell class, LGN receptive field center location, center sign (ON-center or OFF-center), or saccade latency or velocity. The time course of modulation did, however, vary with saccade size such that suppression was longer for longer saccades. The fact that activity from a percentage of LGN cells from all cell classes was modulated in relationship to saccadic eye movements in the absence of direct visual stimulation suggests that this modulation is a general phenomenon not tied to specific types of visual stimuli. Similarly, because the onset of the modulation preceded eye movements by more than 100 ms, it is likely that this modulation reflects higher order motor-planning rather than a corollary of mechanisms in direct control of eye movements themselves. Finally, the fact that the largest modulation is a postsaccadic enhancement of activity may suggest that perisaccadic modulations are designed more for the facilitation of visual information processing once the eyes land at a new location than for filtering unwanted visual stimuli.
Tài liệu tham khảo
citation_journal_title=Exp Brain Res; citation_title=Influence of saccadic eye movements on geniculostriate excitability in normal monkeys; citation_author=JR Bartlett, RW Doty, BB Lee, H Sakakura; citation_volume=25; citation_publication_date=1976; citation_pages=487-509; citation_doi=10.1007/BF00239783; citation_id=CR1
citation_journal_title=Vision Res; citation_title=Visual threshold changes resulting from spontaneous saccadic eye movements; citation_author=GW Beeler; citation_volume=7; citation_issue=9; citation_publication_date=1967; citation_pages=769-775; citation_doi=10.1016/0042-6989(67)90039-9; citation_id=CR2
citation_journal_title=J Comp Neurol; citation_title=Neurotransmitters contained in the subcortical extraretinal inputs to the monkey lateral geniculate nucleus; citation_author=M Bickford, E Ramcharan, D Godwin, A Erisir, J Gnadt, S Sherman; citation_volume=424; citation_publication_date=2000; citation_pages=701-717; citation_doi=10.1002/1096-9861(20000904)424:4<701::AID-CNE11>3.0.CO;2-B; citation_id=CR3
citation_journal_title=Vision Res; citation_title=Temporal impulse response functions for luminance and colour during saccades; citation_author=DC Burr, MC Morrone; citation_volume=36; citation_publication_date=1996; citation_pages=2069-2078; citation_doi=10.1016/0042-6989(95)00282-0; citation_id=CR4
citation_journal_title=Nature; citation_title=Selective suppression of the magnocellular visual pathway during saccadic eye movements; citation_author=D Burr, M Morrone, J Ross; citation_volume=371; citation_publication_date=1994; citation_pages=511-513; citation_doi=10.1038/371511a0; citation_id=CR5
citation_journal_title=Curr Biol; citation_title=Saccadic suppression precedes visual motion analysis; citation_author=DC Burr, MJ Morgan, MC Morrone; citation_volume=9; citation_publication_date=1999; citation_pages=1207-1209; citation_doi=10.1016/S0960-9822(99)80057-8; citation_id=CR6
citation_journal_title=J Neurophysiol; citation_title=Influence of saccadic eye movements on unit activity in simian lateral geniculate and pregeniculate nuclei; citation_author=U Buttner, AF Fuchs; citation_volume=36; citation_publication_date=1973; citation_pages=127-141; citation_id=CR7
citation_journal_title=Vision Res; citation_title=Saccadic omission: why we do not see a grey-out during a saccadic eye movement; citation_author=FW Campbell, RH Wurtz; citation_volume=18; citation_publication_date=1978; citation_pages=1297-1303; citation_doi=10.1016/0042-6989(78)90219-5; citation_id=CR8
Casagrande VA, Norton TT (1991) The lateral geniculate nucleus: a review of its physiology and function. In: The Neural Basis of Visual Function, Ed. A.G. Leventhal, Vol. 4 of Vision and Visual Disfunction, ed. J.R. Cronley Dillon, MacMillan, London, pp 41–84
Casagrande VA, Royal DW, Sáry GM (2005) Extraretinal inputs and feedback mechanisms to the lateral geniculate nucleus (LGN). John Wiley and Sons (in press)
citation_journal_title=Nat Neurosci; citation_title=Motion perception during saccadic eye movements; citation_author=E Castet, GS Masson; citation_volume=3; citation_publication_date=2000; citation_pages=177-183; citation_doi=10.1038/72124; citation_id=CR11
citation_journal_title=J Physiol; citation_title=Spatial and temporal contrast sensitivities of neurons in lateral geniculate nucleus of macaque; citation_author=AM Derrington, P Lennie; citation_volume=357; citation_publication_date=1984; citation_pages=219-240; citation_id=CR12
citation_journal_title=J Neurosci; citation_title=Extraretinal control of saccadic suppression; citation_author=MR Diamond, J Ross, MC Morrone; citation_volume=20; citation_publication_date=2000; citation_pages=3449-3455; citation_id=CR13
citation_journal_title=Optica Acta; citation_title=Eye movements in relation to retinal action; citation_author=RW Ditchburn; citation_volume=1; citation_publication_date=1955; citation_pages=171-176; citation_id=CR14
citation_journal_title=J Comp Neurol; citation_title=Ultrastructural studies of the primate lateral geniculate nucleus: morphology and spatial relationships of axon terminals arising from the retina, visual cortex (area 17), superior colliculus, parabigeminal nucleus, and pretectum of Galago crassicaudatus
; citation_author=S Feig, JK Harting; citation_volume=343; citation_publication_date=1994; citation_pages=17-34; citation_doi=10.1002/cne.903430103; citation_id=CR15
citation_journal_title=J Comp Neurol; citation_title=Cholinergic and monoaminergic innervation of the cat’s thalamus: comparison of the lateral geniculate nucleus with other principal sensory nuclei; citation_author=D Fitzpatrick, IT Diamond, D Raczkowshi; citation_volume=288; citation_publication_date=1989; citation_pages=647-675; citation_doi=10.1002/cne.902880411; citation_id=CR16
citation_journal_title=Vis Neurosci; citation_title=Pharmacological inactivation of pretectal nuclei reveals different modulatory effects on retino-geniculate transmission by X and Y cells; citation_author=K Funk, UT Eysel; citation_volume=12; citation_publication_date=1995; citation_pages=21-33; citation_doi=10.1017/S0952523800007288; citation_id=CR17
citation_journal_title=Exp Brain Res; citation_title=Relationship of pressaccadic activity in frontal eye field and supplementary eye field to saccade initiation in macaque: Poisson spike train analysis; citation_author=D Hanes, K Thompson, J Schall; citation_volume=103; citation_publication_date=1995; citation_pages=85-96; citation_doi=10.1007/BF00241967; citation_id=CR18
citation_journal_title=J Comp Neurol; citation_title=The parabigeminogeniculate projection: connectional studies in 8 mammals; citation_author=JK Harting, DP Lieshout, T Hashikawa, JTl Weber; citation_volume=305; citation_publication_date=1991; citation_pages=559; citation_doi=10.1002/cne.903050404; citation_id=CR19
citation_journal_title=Biometrika; citation_title=A sharper Bonferroni procedure for multiple tests of significance; citation_author=Y Hochberg; citation_volume=75; citation_issue=4; citation_publication_date=1988; citation_pages=800-802; citation_doi=10.1093/biomet/75.4.800; citation_id=CR20
Ichida J, Royal D, Sary Gy, Xu X, Shostak Y, Schall J, Casagrande V (2001) Evidence for suppression of activity in both parvocellular (P) and magnocellular (M) lateral geniculate nucleus (LGN) cells during saccadic eye movements. Abstr SFN 2001
Ichida JM, Royal D, Sary Gy, Schall J, Casagrande V (2003) Are there significant onset latency differences between LGN cells that carry S cone signals compared to those that carry M or L cone signals? Abstr SFN 2003
citation_journal_title=Vis Neurosci; citation_title=Center/surround relationships of magnocellular, parvocellular, and koniocellular relay cells in primate lateral geniculate nucleus; citation_author=GE Irvin, VA Casagrande, TT Norton; citation_volume=10; citation_issue=2; citation_publication_date=1993; citation_pages=363-373; citation_id=CR23
citation_journal_title=Exp Brain Res; citation_title=Lateral geniculate unit activity and eye movements: Saccade-locked changes in dark and in light; citation_author=M Jeannerod, PTS Putkonen; citation_volume=13; citation_publication_date=1971; citation_pages=533-546; citation_doi=10.1007/BF00234284; citation_id=CR24
Johnson K, Balakrishnan (1994) Continuous univariate distributions, vols I and II, 2nd edn. John Wiley and Sons
citation_journal_title=Vision Res; citation_title=Implantation of magnetic search coils for measurement of eye position: an improved method; citation_author=SJ Judge, BJ Richmond, FC Chu; citation_volume=20; citation_publication_date=1980; citation_pages=535-538; citation_doi=10.1016/0042-6989(80)90128-5; citation_id=CR26
citation_journal_title=proceedings of the National Academy of Sciences; citation_title=Correlates of transsaccadic integration in primary visual cortex of the monkey.; citation_author=PS Khayat, H Spekreijse, R Roelfsema; citation_volume=101; citation_publication_date=2004; citation_pages=12712-12717; citation_doi=10.1073/pnas.0301935101; citation_id=CR27
citation_journal_title=J Neurosci; citation_title=Apical dendrites of the neocortex: correlation between sodium- and calcium-dependent spiking and pyramidal cell morphology; citation_author=H Kim, B Connors; citation_volume=13; citation_publication_date=1993; citation_pages=5301-5311; citation_id=CR28
citation_journal_title=Vision Res; citation_title=Visual threshold during eye movements; citation_author=PL Latour; citation_volume=2; citation_publication_date=1962; citation_pages=261-262; citation_doi=10.1016/0042-6989(62)90031-7; citation_id=CR29
citation_journal_title=J Neurophysiol; citation_title=Effects of saccades on the activity of neurons in the cat lateral geniculate nucleus; citation_author=D Lee, JG Malpeli; citation_volume=79; citation_publication_date=1998; citation_pages=922-936; citation_id=CR30
citation_journal_title=J Neurophysiol; citation_title=Bursts and recurrences of bursts in the spike trains of spontaneously active striate cortex neurons; citation_author=CR Legendy, M Salcman; citation_volume=53; citation_issue=4; citation_publication_date=1985; citation_pages=926-939; citation_id=CR31
citation_journal_title=Eur J Neurosci; citation_title=Evidence that blue on cells are part of the third geniculocortical pathway in primates; citation_author=PR Martin, AJR White, AK Goodchild, HD Wilder, AE Sefton; citation_volume=9; citation_publication_date=1997; citation_pages=1536-1541; citation_doi=10.1111/j.1460-9568.1997.tb01509.x; citation_id=CR32
citation_journal_title=J Neurosci; citation_title=Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro; citation_author=A Mason, A Nicoll, K Stratford; citation_volume=11; citation_publication_date=1991; citation_pages=72-84; citation_id=CR33
citation_title=Developmental changes in the main sequence using interesting visual stimuli; citation_publication_date=2002; citation_id=CR34; citation_author=B McKinney; citation_author=E Lewis; citation_author=V Wills; citation_author=JE Richards; citation_publisher=International Society for Infancy Studies
citation_journal_title=Vision Res; citation_title=Smearing of the retinal image during voluntary saccadic eye movements; citation_author=L Mitrani, S Mateeff, N Yakimoff; citation_volume=10; citation_issue=5; citation_publication_date=1970; citation_pages=405-409; citation_doi=10.1016/0042-6989(70)90120-3; citation_id=CR35
citation_journal_title=Vis Res Suppl; citation_title=Saccadic modulation of cell discharges in the lateral geniculate nucleus; citation_author=VM Montero, L Robles; citation_volume=3; citation_publication_date=1971; citation_pages=253-268; citation_doi=10.1016/0042-6989(71)90044-7; citation_id=CR36
Paxinos G, Huang X, Toga AW (2000) The rhesus monkey brain in stereotaxic coordinates. Academic Press
citation_journal_title=Vis Neurosci; citation_title=The effects of saccadic eye movements on the activity of geniculate relay neurons in the monkey; citation_author=EJ Ramcharan, JW Gnadt, SM Sherman; citation_volume=18; citation_publication_date=2001; citation_pages=253-258; citation_doi=10.1017/S0952523801182106; citation_id=CR38
citation_journal_title=Neuron; citation_title=Saccadic eye movements modulate visual responses in the lateral geniculate nucleus; citation_author=JB Reppas, WM Usrey, RC Reid; citation_volume=35; citation_publication_date=2002; citation_pages=961; citation_doi=10.1016/S0896-6273(02)00823-1; citation_id=CR39
citation_journal_title=Vision Res; citation_title=Suppression of visual phosphenes during saccadic eye movements; citation_author=LA Riggs, PA Merton, HB Morton; citation_volume=14; citation_publication_date=1974; citation_pages=997-1011; citation_doi=10.1016/0042-6989(74)90169-2; citation_id=CR40
citation_journal_title=Behav Brain Res; citation_title=Suppression of the magnocellular pathway during saccades; citation_author=J Ross, D Burr, C Morrone; citation_volume=80; citation_publication_date=1996; citation_pages=1-8; citation_doi=10.1016/0166-4328(96)00012-5; citation_id=CR41
citation_journal_title=J Neurosci; citation_title=The time course and amplitude of EPSPs evoked at synapses between pairs of CA3/CA1 neurons in hippocampal slice; citation_author=RJ Sayer, MJ Friedlander, SJ Redman; citation_volume=10; citation_publication_date=1990; citation_pages=826-836; citation_id=CR42
citation_journal_title=J Physiol; citation_title=Neurons in the cat pretectum that project to the dorsal lateral geniculate nucleus are activated during saccades; citation_author=M Schmidt; citation_volume=76; citation_publication_date=1996; citation_pages=2907-2918; citation_id=CR43
citation_journal_title=Eur J Neurosci; citation_title=Physiological characterization of pretectal neurons projecting to the lateral nucleus in the cat; citation_author=M Schmidt, K-P Hoffman; citation_volume=4; citation_publication_date=1966; citation_pages=318-326; citation_doi=10.1111/j.1460-9568.1992.tb00879.x; citation_id=CR44
citation_journal_title=J Neurophysiol; citation_title=Signal timing across the macaque visual system; citation_author=MT Schmolesky, Y Wang, DP Hanes, KG Thompson, S Leutgeb, JD Schall, AG Leventhal; citation_volume=79; citation_publication_date=1998; citation_pages=3272-3278; citation_id=CR45
citation_journal_title=Exp Brain Res; citation_title=The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus; citation_author=SM Sherman, C Koch; citation_volume=63; citation_publication_date=1986; citation_pages=1-20; citation_doi=10.1007/BF00235642; citation_id=CR46
citation_journal_title=Vision Res; citation_title=Saccadic suppression of low-level motion; citation_author=S Shioiri, P Cavanagh; citation_volume=29; citation_publication_date=1989; citation_pages=915-928; citation_doi=10.1016/0042-6989(89)90106-5; citation_id=CR47
citation_journal_title=Vision Res; citation_title=Visual suppression during smooth following and saccadic eye movements; citation_author=A Starr, R Angel, H Yeates; citation_volume=9; citation_issue=1; citation_publication_date=1969; citation_pages=195-197; citation_doi=10.1016/0042-6989(69)90042-X; citation_id=CR48
citation_journal_title=Nat Neurosci; citation_title=The site of saccadic suppression; citation_author=KV Thilo, L Santoro, V Walsh, C Blakemore; citation_volume=7; citation_publication_date=2004; citation_pages=13-14; citation_doi=10.1038/nn1171; citation_id=CR49
citation_journal_title=J Opt Soc Am; citation_title=Vision during voluntary saccadic eye movements; citation_author=FC Volkmann; citation_volume=52; citation_publication_date=1962; citation_pages=571-578; citation_id=CR50
citation_journal_title=Vision Res; citation_title=Human visual suppression; citation_author=F Volkmann; citation_volume=26; citation_issue=9; citation_publication_date=1986; citation_pages=1401-1416; citation_doi=10.1016/0042-6989(86)90164-1; citation_id=CR51
citation_journal_title=J Physiol; citation_title=Spatial properties of koniocellular cells in the lateral geniculate nucleus of the marmoset Callithrix jacchus
; citation_author=AJ White, SG Solomon, PR Martin; citation_volume=533; citation_publication_date=2001; citation_pages=519-535; citation_doi=10.1111/j.1469-7793.2001.0519a.x; citation_id=CR52
citation_journal_title=J Neurophysiol; citation_title=Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey; citation_author=TN Wiesel, DH Hubel; citation_volume=29; citation_publication_date=1966; citation_pages=1115-1116; citation_id=CR53
citation_journal_title=J Physiol; citation_title=A comparison of koniocellular, magnocellular and parvocellular receptive field properties in the lateral geniculate nucleus of the owl monkey (Aotus trivirgatus); citation_author=X Xu, JM Ichida, JD Allison, JD Boyd, AB Bonds, VA Casagrande; citation_volume=531; citation_publication_date=2001; citation_pages=203-218; citation_doi=10.1111/j.1469-7793.2001.0203j.x; citation_id=CR54
citation_journal_title=Vis Neurosci; citation_title=Modeling receptive-field structure of koniocellular, magnocellular, and parvocellular LGN cells in the owl monkey (Aotus trivirgatus); citation_author=XM Xu, AB Bonds, VA Casagrande; citation_volume=19; citation_publication_date=2002; citation_pages=703-711; citation_doi=10.1017/S0952523802196027; citation_id=CR55
citation_journal_title=Brain Res Bull; citation_title=Time course of inhibition induced by a putative saccadic suppression circuit in the dorsal lateral geniculate nucleus of the rabbit; citation_author=JJ Zhu, FS Lo; citation_volume=41; citation_publication_date=1996; citation_pages=281-291; citation_doi=10.1016/S0361-9230(96)00201-8; citation_id=CR56
citation_journal_title=Exp Neurol; citation_title=Saccadic suppression: elevation of visual threshold associated with saccadic eye movements; citation_author=BL Zuber, L Stark; citation_volume=16; citation_publication_date=1966; citation_pages=65-79; citation_doi=10.1016/0014-4886(66)90087-2; citation_id=CR57
citation_journal_title=Exp Neurol; citation_title=Saccadic suppression of the pupillary light reflex; citation_author=BL Zuber, L Stark, M Lorber; citation_volume=14; citation_publication_date=1966; citation_pages=351-370; citation_doi=10.1016/0014-4886(66)90120-8; citation_id=CR58