Cardiac MR Elastography: Comparison with left ventricular pressure measurement

Journal of Cardiovascular Magnetic Resonance - Tập 11 - Trang 1-10 - 2009
Thomas Elgeti1, Michael Laule2, Nikola Kaufels1, Jörg Schnorr3, Bernd Hamm1, Abbas Samani4,5, Jürgen Braun6, Ingolf Sack1
1Department of Radiology, Charité–Universitätsmedizin Berlin, Berlin, Germany
2Department of Medicine (Cardiology, Angiology, Pulmonology) Charité - Universitätsmedizin Berlin, Berlin, Germany
3Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
4Department of Medical Biophysics, University of Western Ontario, Ontario, Canada
5Department of Electrical and Computer Engineering, University of Western Ontario, Ontario, Canada
6Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany

Tóm tắt

To compare magnetic resonance elastography (MRE) with ventricular pressure changes in an animal model. Three pigs of different cardiac physiology (weight, 25 to 53 kg; heart rate, 61 to 93 bpm; left ventricular [LV] end-diastolic volume, 35 to 70 ml) were subjected to invasive LV pressure measurement by catheter and noninvasive cardiac MRE. Cardiac MRE was performed in a short-axis view of the heart and applying a 48.3-Hz shear-wave stimulus. Relative changes in LV-shear wave amplitudes during the cardiac cycle were analyzed. Correlation coefficients between wave amplitudes and LV pressure as well as between wave amplitudes and LV diameter were determined. A relationship between MRE and LV pressure was observed in all three animals (R2 ≥ 0.76). No correlation was observed between MRE and LV diameter (R2 ≤ 0.15). Instead, shear wave amplitudes decreased 102 ± 58 ms earlier than LV diameters at systole and amplitudes increased 175 ± 40 ms before LV dilatation at diastole. Amplitude ratios between diastole and systole ranged from 2.0 to 2.8, corresponding to LV pressure differences of 60 to 73 mmHg. Externally induced shear waves provide information reflecting intraventricular pressure changes which, if substantiated in further experiments, has potential to make cardiac MRE a unique noninvasive imaging modality for measuring pressure-volume function of the heart.

Tài liệu tham khảo

Sengupta PP, Krishnamoorthy VK, Korinek J, Narula J, Vannan MA, Lester SJ, Tajik JA, Seward JB, Khandheria BK, Belohlavek M: Left ventricular form and function revisited: applied translational science to cardiovascular ultrasound imaging. J Am Soc Echocardiogr. 2007, 20 (5): 539-551. 10.1016/j.echo.2006.10.013. Axel L: Biomechanical dynamics of the heart with MRI. Annu Rev Biomed Eng. 2002, 4: 321-347. 10.1146/annurev.bioeng.4.020702.153434. Finn JP, Nael K, Deshpande V, Ratib O, Laub G: Cardiac MR imaging: state of the technology. Radiology. 2006, 241 (2): 338-354. 10.1148/radiol.2412041866. Beek AM, Bondarenko O, Afsharzada F, van Rossum AC: Quantification of late gadolinium enhanced CMR in viability assessment in chronic ischemic heart disease: a comparison to functional outcome. J Cardiovasc Magn Reson. 2009, 11 (1): 6-10.1186/1532-429X-11-6. Kass DA: Assessment of diastolic dysfunction. Invasive modalities. Cardiol Clin. 2000, 18 (3): 571-586. 10.1016/S0733-8651(05)70162-4. Strobeck JE, Sonnenblick EH: Myocardial and ventricular function. Part II: Intact heart. Herz. 1981, 6 (5): 275-287. Mandinov L, Eberli FR, Seiler C, Hess OM: Diastolic heart failure. Cardiovasc Res. 2000, 45 (4): 813-825. 10.1016/S0008-6363(99)00399-5. Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL: Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science. 1995, 269 (5232): 1854-1857. 10.1126/science.7569924. Rump J, Klatt D, Braun J, Warmuth C, Sack I: Fractional encoding of harmonic motions in MR elastography. Magn Reson Med. 2007, 57 (2): 388-395. 10.1002/mrm.21152. Elgeti T, Rump J, Hamhaber U, Papazoglou S, Hamm B, Braun J, Sack I: Cardiac magnetic resonance elastography. Initial results. Invest Radiol. 2008, 43 (11): 762-772. 10.1097/RLI.0b013e3181822085. Sack I, Rump J, Elgeti T, Samani A, Braun J: MR elastography of the human heart: noninvasive assessment of myocardial elasticity changes by shear wave amplitude variations. Magn Reson Med. 2009, 61 (3): 668-677. 10.1002/mrm.21878. Klatt D, Asbach P, Rump J, Papazoglou S, Somasundaram R, Modrow J, Braun J, Sack I: In vivo determination of hepatic stiffness using steady-state free precession magnetic resonance elastography. Invest Radiol. 2006, 41 (12): 841-848. 10.1097/01.rli.0000244341.16372.08. Papazoglou S, Xu C, Hamhaber U, Siebert E, Bohner G, Klingebiel R, Braun J, Sack I: Scatter-based magnetic resonance elastography. Phys Med Biol. 2009, 54 (7): 2229-2241. 10.1088/0031-9155/54/7/025. Burkhoff D, Mirsky I, Suga H: Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers. Am J Physiol Heart Circ Physiol. 2005, 289 (2): H501-512. 10.1152/ajpheart.00138.2005. Magorien DJ, Shaffer P, Bush CA, Magorien RD, Kolibash AJ, Leier CV, Bashore TM: Assessment of left ventricular pressure-volume relations using gated radionuclide angiography, echocardiography, and micromanometer pressure recordings. A new method for serial measurements of systolic and diastolic function in man. Circulation. 1983, 67 (4): 844-853. Oh JK, Tajik J: The return of cardiac time intervals: the phoenix is rising. J Am Coll Cardiol. 2003, 42 (8): 1471-1474. 10.1016/S0735-1097(03)01036-2.