The Sato–Tate distribution in thin parametric families of elliptic curves
Tóm tắt
We obtain new results concerning the Sato–Tate conjecture on the distribution of Frobenius traces over single and double parametric families of elliptic curves. We consider these curves for values of parameters having prescribed arithmetic structure: product sets, geometric progressions, and most significantly prime numbers. In particular, some families are much thinner than the ones previously studied.
Tài liệu tham khảo
Apostol, T.M.: Introduction to Analytic Number Theory. Springer, New York (1976)
Baier, S.: The Lang-Trotter conjecture on average. J. Ramanujan Math. Soc. 22, 299–314 (2007)
Baier, S.: A remark on the Lang-Trotter conjecture. In: Steuding, R., Steuding, J. (eds.) New Directions in Value-Distribution Theory of Zeta and L-functions, pp. 11–18. Shaker Verlag, Herzogenrath (2009)
Baier, S., Zhao, L.: The Sato-Tate conjecture on average for small angles. Trans. Am. Math. Soc. 361, 1811–1832 (2009)
Banks, W.D., Conflitti, A., Friedlander, J.B., Shparlinski, I.E.: Exponential sums over Mersenne numbers. Compos. Math. 140, 15–30 (2004)
Banks, W.D., Shparlinski, I.E.: Sato-Tate, cyclicity, and divisibility statistics on average for elliptic curves of small height. Israel J. Math. 173, 253–277 (2009)
Barnet-Lamb, T., Geraghty, D., Harris, M., Taylor, R.: A family of Calabi-Yau varieties and potential automorphy II. Publ. Res. Inst. Math. Sci. 47, 29–98 (2011)
Bhargava, M., Shankar, A.: Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves. Ann. Math. 181, 191–242 (2015)
Birch, B.J.: How the number of points of an elliptic curve over a fixed prime field varies. J. Lond. Math. Soc. 43, 57–60 (1968)
Clozel, L., Harris, M., Taylor, R.: Automorphy for some \(\ell \)-adic lifts of automorphic mod \(\ell \) Galois representations. Publ. Math. IHES 108, 1–181 (2008)
Cojocaru, A.C., Hall, C.: Uniform results for Serre’s theorem for elliptic curves. Int. Math. Res. Not. 2005, 3065–3080 (2005)
Cojocaru, A.C., Shparlinski, I.E.: Distribution of Farey fractions in residue classes and Lang-Trotter conjectures on average. Proc. Am. Math. Soc. 136, 1977–1986 (2008)
Davenport, H.: Multiplicative Number Theory. Springer, New York (2000)
David, C., Pappalardi, F.: Average Frobenius distributions of elliptic curves. Int. Math. Res. Not. 1999, 165–183 (1999)
Ford, K.: The distribution of integers with a divisor in a given interval. Ann. Math. 168, 367–433 (2008)
Fouvry, É., Kowalski, E., Michel, P.: Algebraic trace functions over the primes. Duke Math. J. 163, 1683–1736 (2014)
Fouvry, É., Murty, M.R.: On the distribution of supersingular primes. Can. J. Math. 48, 81–104 (1996)
Fouvry, É., Pomykala, J.: Rang des courbes elliptiques et sommes d’exponentielles. Monatsh. Math. 116, 111–125 (1993)
Harris, M., Shepherd-Barron, N., Taylor, R.: A family of Calabi-Yau varieties and potential automorphy. Ann. Math. 171, 779–813 (2010)
Indlekofer, H.-K., Timofeev, N.M.: Divisors of shifted primes. Publ. Math. Debrecen 60, 307–345 (2002)
Iwaniec, H., Kowalski, E.: Analytic Number Theory. American Mathematical Society, Providence (2004)
Katz, N.M.: Exponential sums over finite fields and differential equations over the complex numbers: some interactions. Bull. Am. Math. Soc. 23, 269–309 (1990)
Katz, N.M.: Estimates for nonsingular multiplicative character sums. Int. Math. Res. Not. 2002, 333–349 (2002)
Kowalski, E.: Elliptic curves, rank in families and random matrices, Ranks of elliptic curves and random matrix theory, London Math. Soc. Lecture Note Ser., vol. 341, Cambridge Univ. Press, Cambridge, 7–52 (2007)
Lang, S., Trotter, H.: Frobenius Distributions in \({{\rm GL}}_2\)-Extensions, Lecture Notes in Math. 504, Springer, (1976)
Mestre, J.-F.: Courbes elliptiques et formules explicites, Séminaire de Théorie des Nombres de Paris, 1981–82, pp. 179–187. Basel, Birkhaüser (1983)
Mestre, J.-F.: Formules explicites et minorations de conducteurs de variétés algébriques. Compos. Math. 58, 209–232 (1986)
Michel, P.: Rang moyen de familles de courbes elliptiques et lois de Sato-Tate. Monatsh. Math. 120, 127–136 (1995)
Milne, J. S.: Lectures on Étale Cohomology, (v2.21). http://www.jmilne.org/math/CourseNotes/lec.html (2013)
Niederreiter, H.: The distribution of values of Kloosterman sums. Arch. Math. 56, 270–277 (1991)
Poonen, B.: Average rank of elliptic curves [after Manjul Bhargava and Arul Shankar], Astérisque, No. 352 (2013), Exp. No. 1049, 187–204
Sha, M., Shparlinski, I.E.: Lang-Trotter and Sato-Tate distributions in single and double parametric families of elliptic curves. Acta Arith. 170, 299–325 (2015)
Sha, M., Shparlinski, I.E.: The Sato-Tate distribution in families of elliptic curves with a rational parameter of bounded height. Indagat. Math. 28, 306–320 (2017)
Shparlinski, I.E.: On the Sato-Tate conjecture on average for some families of elliptic curves. Forum Math. 25, 647–664 (2013)
Shparlinski, I.E.: On the Lang-Trotter and Sato-Tate conjectures on average for polynomial families of elliptic curves. Michigan Math. J. 62, 491–505 (2013)
Silverman, J.H.: The average rank of an algebraic family of elliptic curves. J. Reine Angew. Math. 504, 227–236 (1998)
Silverman, J.H.: The Arithmetic of Elliptic Curves. Springer, Berlin (2009)
Taylor, R.: Automorphy for some \(\ell \)-adic lifts of automorphic mod \(\ell \) Galois representations II. Publ. Math. IHES 108, 183–239 (2008)
Vaughan, R.C.: Sommes trigonométriques sur les nombres premiers. C. R. Acad. Sci. Paris Sér. A 285, 981–983 (1977)
Vaughan, R.C.: An elementary method in prime number theory. Acta Arith. 37, 111–115 (1980)
Vaughan, R.C.: A new iterative method for Waring’s problem. Acta Math. 162, 1–71 (1989)