HIV-1 viral genes and mitochondrial apoptosis

Springer Science and Business Media LLC - Tập 13 - Trang 1088-1099 - 2008
Devon J. Shedlock1, Daniel Hwang1, Andy Y. Choo2, Christopher W. Chung1, Karuppiah Muthumani1, David B. Weiner1
1Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia USA
2Department of Cell Biology, Harvard Medical School, Boston, USA

Tóm tắt

The mitochondrion is an organelle that regulates various cellular functions including the production of energy and programmed cell death. Aberrant mitochondrial function is often concomitant with various cytopathies and medical disorders. The mitochondrial membrane plays a key role in the induction of cellular apoptosis, and its destabilization, as triggered by both intracellular and extracellular stimuli, results in the release of proapoptotic factors into the cytosol. Not surprisingly, proteins from the human immunodeficiency virus type 1 (HIV) have been implicated in exploiting this organelle to promote the targeted depletion of key immune cells, which assists in viral evasion of the immune system and contributes to the characteristic global immunodeficiency observed during progression of disease. Here we review the mechanisms by which HIV affects the mitochondrion, and suggest that various viral-associated genes may directly regulate apoptotic cell death.

Tài liệu tham khảo

Duve C (1975) Exploring cells with a centrifuge. Science 189:186–194 (New York, NY) Scheffler IE (2001) A century of mitochondrial research: achievements and perspectives. Mitochondrion 1:3–31. doi:10.1016/S1567-7249(00)00002-7 Chattergoon MA, Muthumani K, Tamura Y et al (2008) DR5 activation of caspase-8 induces DC maturation and immune enhancement in vivo. Mol Ther 16:419–426. doi:10.1038/sj.mt.6300373 Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519. doi:10.1038/74994 Saraste M (1999) Oxidative phosphorylation at the fin de siecle. Science 283:1488–1493 (New York, NY) Vieira HL, Haouzi D, El Hamel C et al (2000) Permeabilization of the mitochondrial inner membrane during apoptosis: impact of the adenine nucleotide translocator. Cell Death Differ 7:1146–1154. doi:10.1038/sj.cdd.4400778 Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312 (New York, NY) Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60:619–642. doi:10.1146/annurev.physiol.60.1.619 Jacotot E, Costantini P, Laboureau E, Zamzami N, Susin SA, Kroemer G (1999) Mitochondrial membrane permeabilization during the apoptotic process. Ann NY Acad Sci 887:18–30 Marzo I, Brenner C, Zamzami N et al (1998) The permeability transition pore complex: a target for apoptosis regulation by caspases and bcl-2-related proteins. J Exp Med 187:1261–1271. doi:10.1084/jem.187.8.1261 Nicholson DW, Thornberry NA (1997) Caspases: killer proteases. Trends Biochem Sci 22:299–306. doi:10.1016/S0968-0004(97)01085-2 Kroemer G (1997) The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med 3:614–620. doi:10.1038/nm0697-614 Zamzami N, Brenner C, Marzo I, Susin SA, Kroemer G (1998) Subcellular and submitochondrial mode of action of Bcl-2-like oncoproteins. Oncogene 16:2265–2282. doi:10.1038/sj.onc.1201989 Green DR (2000) Apoptotic pathways: paper wraps stone blunts scissors. Cell 102:1–4. doi:10.1016/S0092-8674(00)00003-9 Boldin MP, Goncharov TM, Goltsev YV, Wallach D (1996) Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85:803–815. doi:10.1016/S0092-8674(00)81265-9 Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501. doi:10.1016/S0092-8674(00)81590-1 Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490. doi:10.1016/S0092-8674(00)81589-5 Wei MC, Zong WX, Cheng EH et al (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730 (New York, NY) Li F, Ambrosini G, Chu EY et al (1998) Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396:580–584. doi:10.1038/25141 Quignon F, De Bels F, Koken M, Feunteun J, Ameisen JC, de The H (1998) PML induces a novel caspase-independent death process. Nat Genet 20:259–265. doi:10.1038/3068 Xiang J, Chao DT, Korsmeyer SJ (1996) BAX-induced cell death may not require interleukin 1 beta-converting enzyme-like proteases. Proc Natl Acad Sci USA 93:14559–14563. doi:10.1073/pnas.93.25.14559 Marzo I, Brenner C, Zamzami N et al (1998) Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281:2027–2031 (New York, NY) Vander Heiden MG, Chandel NS, Williamson EK, Schumacker PT, Thompson CB (1997) Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91:627–637. doi:10.1016/S0092-8674(00)80450-X Krajewski S, Krajewska M, Shabaik A, Miyashita T, Wang HG, Reed JC (1994) Immunohistochemical determination of in vivo distribution of Bax, a dominant inhibitor of Bcl-2. Am J Pathol 145:1323–1336 Brenner C, Cadiou H, Vieira HL et al (2000) Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator. Oncogene 19:329–336. doi:10.1038/sj.onc.1203298 Nass MM, Nass S (1963) Intramitochondrial Fibers with DNA Characteristics. I. Fixation and Electron Staining Reactions. J Cell Biol 19:593–611. doi:10.1083/jcb.19.3.593 Shadel GS, Clayton DA (1997) Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem 66:409–435. doi:10.1146/annurev.biochem.66.1.409 Croteau DL, Bohr VA (1997) Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. J Biol Chem 272:25409–25412. doi:10.1074/jbc.272.41.25409 Sawyer DE, Van Houten B (1999) Repair of DNA damage in mitochondria. Mutat Res 434:161–176 Attardi G (1993) The human mitochondrial genetic system. In: DiMauro S, Wallace DC (eds) Mitochondrial DNA in human pathology. Raven Press, New York, pp 9–25 Giege P, Brennicke A (1999) RNA editing in Arabidopsis mitochondria effects 441 C to U changes in ORFs. Proc Natl Acad Sci USA 96:15324–15329. doi:10.1073/pnas.96.26.15324 Zhang Y, Spremulli LL (1998) Roles of residues in mammalian mitochondrial elongation factor Ts in the interaction with mitochondrial and bacterial elongation factor Tu. J Biol Chem 273:28142–28148. doi:10.1074/jbc.273.43.28142 Bauer MF, Hofmann S, Neupert W, Brunner M (2000) Protein translocation into mitochondria: the role of TIM complexes. Trends Cell Biol 10:25–31. doi:10.1016/S0962-8924(99)01684-0 Schatz G (1998) Protein transport. The doors to organelles. Nature 395:439–440. doi:10.1038/26620 Cossarizza A (2008) Apoptosis and HIV infection: about molecules and genes. Curr Pharm Des 14:237–244. doi:10.2174/138161208783413293 Dalgleish AG, Beverley PC, Clapham PR, Crawford DH, Greaves MF, Weiss RA (1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312:763–767. doi:10.1038/312763a0 Lifson JD, Feinberg MB, Reyes GR et al (1986) Induction of CD4-dependent cell fusion by the HTLV-III/LAV envelope glycoprotein. Nature 323:725–728. doi:10.1038/323725a0 Lifson JD, Reyes GR, McGrath MS, Stein BS, Engleman EG (1986) AIDS retrovirus induced cytopathology: giant cell formation and involvement of CD4 antigen. Science 232:1123–1127 (New York, NY) Choe H, Farzan M, Sun Y et al (1996) The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85:1135–1148. doi:10.1016/S0092-8674(00)81313-6 Deng H, Liu R, Ellmeier W et al (1996) Identification of a major co-receptor for primary isolates of HIV-1. Nature 381:661–666. doi:10.1038/381661a0 Dragic T, Litwin V, Allaway GP et al (1996) HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381:667–673. doi:10.1038/381667a0 Seth A, Markee J, Hoering A et al (2001) Alterations in T cell phenotype and human immunodeficiency virus type 1-specific cytotoxicity after potent antiretroviral therapy. J Infect Dis 183:722–729. doi:10.1086/318816 Douek DC, Brenchley JM, Betts MR et al (2002) HIV preferentially infects HIV-specific CD4+ T cells. Nature 417:95–98. doi:10.1038/417095a Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M (1995) Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373:123–126. doi:10.1038/373123a0 Wei X, Ghosh SK, Taylor ME et al (1995) Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373:117–122. doi:10.1038/373117a0 Chattopadhyay PK, Douek DC, Gange SJ, Chadwick KR, Hellerstein M, Margolick JB (2006) Longitudinal assessment of de novo T cell production in relation to HIV-associated T cell homeostasis failure. AIDS Res Hum Retrov 22:501–507. doi:10.1089/aid.2006.22.501 Teixeira L, Valdez H, McCune JM et al (2001) Poor CD4 T cell restoration after suppression of HIV-1 replication may reflect lower thymic function. AIDS 15:1749–1756. doi:10.1097/00002030-200109280-00002 Banda NK, Bernier J, Kurahara DK et al (1992) Crosslinking CD4 by human immunodeficiency virus gp120 primes T cells for activation-induced apoptosis. J Exp Med 176:1099–1106. doi:10.1084/jem.176.4.1099 Groux H, Torpier G, Monte D, Mouton Y, Capron A, Ameisen JC (1992) Activation-induced death by apoptosis in CD4+ T cells from human immunodeficiency virus-infected asymptomatic individuals. J Exp Med 175:331–340. doi:10.1084/jem.175.2.331 Meyaard L, Otto SA, Jonker RR, Mijnster MJ, Keet RP, Miedema F (1992) Programmed death of T cells in HIV-1 infection. Science 257:217–219 (New York, NY) Sakai K, Dimas J, Lenardo MJ (2006) The Vif and Vpr accessory proteins independently cause HIV-1-induced T cell cytopathicity and cell cycle arrest. Proc Natl Acad Sci USA 103:3369–3374. doi:10.1073/pnas.0509417103 Bolton DL, Hahn BI, Park EA, Lehnhoff LL, Hornung F, Lenardo MJ (2002) Death of CD4(+) T-cell lines caused by human immunodeficiency virus type 1 does not depend on caspases or apoptosis. J Virol 76:5094–5107. doi:10.1128/JVI.76.10.5094-5107.2002 Lenardo MJ, Angleman SB, Bounkeua V et al (2002) Cytopathic killing of peripheral blood CD4(+) T lymphocytes by human immunodeficiency virus type 1 appears necrotic rather than apoptotic and does not require env. J Virol 76:5082–5093. doi:10.1128/JVI.76.10.5082-5093.2002 Speirs C, van Nimwegen E, Bolton D et al (2005) Analysis of human immunodeficiency virus cytopathicity by using a new method for quantitating viral dynamics in cell culture. J Virol 79:4025–4032. doi:10.1128/JVI.79.7.4025-4032.2005 Ott M, Emiliani S, Van Lint C et al (1997) Immune hyperactivation of HIV-1-infected T cells mediated by Tat and the CD28 pathway. Science 275:1481–1485 (New York, NY) Cossarizza A, Ortolani C, Mussini C et al (1995) Massive activation of immune cells with an intact T cell repertoire in acute human immunodeficiency virus syndrome. J Infect Dis 172:105–112 Norris PJ, Pappalardo BL, Custer B, Spotts G, Hecht FM, Busch MP (2006) Elevations in IL-10, TNF-alpha, and IFN-gamma from the earliest point of HIV Type 1 infection. AIDS Res Hum Retrov 22:757–762. doi:10.1089/aid.2006.22.757 Cullen BR (1998) HIV-1 auxiliary proteins: making connections in a dying cell. Cell 93:685–692. doi:10.1016/S0092-8674(00)81431-2 Gougeon ML, Montagnier L (1999) Programmed cell death as a mechanism of CD4 and CD8 T cell deletion in AIDS. Molecular control and effect of highly active anti-retroviral therapy. Ann NY Acad Sci 887:199–212 Naora H, Gougeon ML (1999) Interleukin-15 is a potent survival factor in the prevention of spontaneous but not CD95-induced apoptosis in CD4 and CD8 T lymphocytes of HIV-infected individuals. Correlation with its ability to increase BCL-2 expression. Cell Death Differ 6:1002–1011. doi:10.1038/sj.cdd.4400575 Castedo M, Macho A, Zamzami N et al (1995) Mitochondrial perturbations define lymphocytes undergoing apoptotic depletion in vivo. Eur J Immunol 25:3277–3284. doi:10.1002/eji.1830251212 Cossarizza A, Mussini C, Mongiardo N et al (1997) Mitochondria alterations and dramatic tendency to undergo apoptosis in peripheral blood lymphocytes during acute HIV syndrome. AIDS 11:19–26. doi:10.1097/00002030-199701000-00004 Ferri KF, Jacotot E, Blanco J et al (2000) Apoptosis control in syncytia induced by the HIV type 1-envelope glycoprotein complex: role of mitochondria and caspases. J Exp Med 192:1081–1092. doi:10.1084/jem.192.8.1081 Chan DC, Fass D, Berger JM, Kim PS (1997) Core structure of gp41 from the HIV envelope glycoprotein. Cell 89:263–273. doi:10.1016/S0092-8674(00)80205-6 Zagury JF, Cantalloube H, Achour A et al (1993) Striking similarities between HIV-1 Env protein and the apoptosis mediating cell surface antigen Fas. Role in the pathogenesis of AIDS. Biomed Pharmacother 47:331–335 Orlikowsky T, Wang ZQ, Dudhane A, Horowitz H, Riethmuller G, Hoffmann MK (1997) Cytotoxic monocytes in the blood of HIV type 1-infected subjects destroy targeted T cells in a CD95-dependent fashion. AIDS Res Hum Retrov 13:953–960 Katsikis PD, Garcia-Ojeda ME, Wunderlich ES et al (1996) Activation-induced peripheral blood T cell apoptosis is Fas independent in HIV-infected individuals. Int Immunol 8:1311–1317. doi:10.1093/intimm/8.8.1311 Wang ZQ, Dudhane A, Orlikowsky T et al (1994) CD4 engagement induces Fas antigen-dependent apoptosis of T cells in vivo. Eur J Immunol 24:1549–1552. doi:10.1002/eji.1830240714 Hashimoto F, Oyaizu N, Kalyanaraman VS, Pahwa S (1997) Modulation of Bcl-2 protein by CD4 cross-linking: a possible mechanism for lymphocyte apoptosis in human immunodeficiency virus infection and for rescue of apoptosis by interleukin-2. Blood 90:745–753 Krammer PH (2000) CD95’s deadly mission in the immune system. Nature 407:789–795. doi:10.1038/35037728 Twu C, Liu NQ, Popik W et al (2002) Cardiomyocytes undergo apoptosis in human immunodeficiency virus cardiomyopathy through mitochondrion- and death receptor-controlled pathways. Proc Natl Acad Sci USA 99:14386–14391. doi:10.1073/pnas.212327899 Xu XN, Laffert B, Screaton GR et al (1999) Induction of Fas ligand expression by HIV involves the interaction of Nef with the T cell receptor zeta chain. J Exp Med 189:1489–1496. doi:10.1084/jem.189.9.1489 Zauli G, Gibellini D, Secchiero P et al (1999) Human immunodeficiency virus type 1 Nef protein sensitizes CD4(+) T lymphoid cells to apoptosis via functional upregulation of the CD95/CD95 ligand pathway. Blood 93:1000–1010 Herbein G, Mahlknecht U, Batliwalla F et al (1998) Apoptosis of CD8+ T cells is mediated by macrophages through interaction of HIV gp120 with chemokine receptor CXCR4. Nature 395:189–194. doi:10.1038/26026 Cefai D, Ferrer M, Serpente N et al (1992) Internalization of HIV glycoprotein gp120 is associated with down-modulation of membrane CD4 and p56lck together with impairment of T cell activation. J Immunol 149:285–294 Kaul M, Lipton SA (1999) Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis. Proc Natl Acad Sci USA 96:8212–8216. doi:10.1073/pnas.96.14.8212 Ohnimus H, Heinkelein M, Jassoy C (1997) Apoptotic cell death upon contact of CD4+ T lymphocytes with HIV glycoprotein-expressing cells is mediated by caspases but bypasses CD95 (Fas/Apo-1) and TNF receptor 1. J Immunol 159:5246–5252 Berndt C, Mopps B, Angermuller S, Gierschik P, Krammer PH (1998) CXCR4 and CD4 mediate a rapid CD95-independent cell death in CD4(+) T cells. Proc Natl Acad Sci USA 95:12556–12561. doi:10.1073/pnas.95.21.12556 Fermin CD, Garry RF (1992) Membrane alterations linked to early interactions of HIV with the cell surface. Virology 191:941–946. doi:10.1016/0042-6822(92)90269-U Yusim A, Franklin L, Brooke S, Ajilore O, Sapolsky R (2000) Glucocorticoids exacerbate the deleterious effects of gp120 in hippocampal and cortical explants. J Neurochem 74:1000–1007. doi:10.1046/j.1471-4159.2000.0741000.x Sodroski J, Goh WC, Rosen C, Campbell K, Haseltine WA (1986) Role of the HTLV-III/LAV envelope in syncytium formation and cytopathicity. Nature 322:470–474. doi:10.1038/322470a0 Wang S, York J, Shu W, Stoller MO, Nunberg JH, Lu M (2002) Interhelical interactions in the gp41 core: implications for activation of HIV-1 membrane fusion. Biochemistry 41:7283–7292. doi:10.1021/bi025648y Garg H, Blumenthal R (2006) HIV gp41-induced apoptosis is mediated by caspase-3-dependent mitochondrial depolarization, which is inhibited by HIV protease inhibitor nelfinavir. J Leukoc Biol 79:351–362. doi:10.1189/jlb.0805430 Castedo M, Roumier T, Blanco J et al (2002) Sequential involvement of Cdk1, mTOR and p53 in apoptosis induced by the HIV-1 envelope. EMBO J 21:4070–4080. doi:10.1093/emboj/cdf391 Sylwester A, Murphy S, Shutt D, Soll DR (1997) HIV-induced T cell syncytia are self-perpetuating and the primary cause of T cell death in culture. J Immunol 158:3996–4007 Bossy-Wetzel E, Green DR (1999) Caspases induce cytochrome c release from mitochondria by activating cytosolic factors. J Biol Chem 274:17484–17490. doi:10.1074/jbc.274.25.17484 Rasola A, Gramaglia D, Boccaccio C, Comoglio PM (2001) Apoptosis enhancement by the HIV-1 Nef protein. J Immunol 166:81–88 James CO, Huang MB, Khan M, Garcia-Barrio M, Powell MD, Bond VC (2004) Extracellular Nef protein targets CD4+ T cells for apoptosis by interacting with CXCR4 surface receptors. J Virol 78:3099–3109. doi:10.1128/JVI.78.6.3099-3109.2004 Collins KL, Chen BK, Kalams SA, Walker BD, Baltimore D (1998) HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 391:397–401. doi:10.1038/34929 Inoue M, Koga Y, Djordjijevic D et al (1993) Down-regulation of CD4 molecules by the expression of Nef: a quantitative analysis of CD4 antigens on the cell surfaces. Int Immunol 5:1067–1073. doi:10.1093/intimm/5.9.1067 Lindwasser OW, Chaudhuri R, Bonifacino JS (2007) Mechanisms of CD4 downregulation by the Nef and Vpu proteins of primate immunodeficiency viruses. Curr Mol Med 7:171–184. doi:10.2174/156652407780059177 Geleziunas R, Xu W, Takeda K, Ichijo H, Greene WC (2001) HIV-1 Nef inhibits ASK1-dependent death signalling providing a potential mechanism for protecting the infected host cell. Nature 410:834–838. doi:10.1038/35071111 Wolf D, Witte V, Laffert B et al (2001) HIV-1 Nef associated PAK and PI3-kinases stimulate Akt-independent Bad-phosphorylation to induce anti-apoptotic signals. Nat Med 7:1217–1224. doi:10.1038/nm1101-1217 Li-Weber M, Laur O, Dern K, Krammer PH (2000) T cell activation-induced and HIV tat-enhanced CD95(APO-1/Fas) ligand transcription involves NF-kappaB. Eur J Immunol 30:661–670. doi :10.1002/1521-4141(200002)30:2≤661::AID-IMMU661≥3.0.CO;2-L Ensoli B, Barillari G, Salahuddin SZ, Gallo RC, Wong-Staal F (1990) Tat protein of HIV-1 stimulates growth of cells derived from Kaposi’s sarcoma lesions of AIDS patients. Nature 345:84–86. doi:10.1038/345084a0 McCloskey TW, Ott M, Tribble E et al (1997) Dual role of HIV Tat in regulation of apoptosis in T cells. J Immunol 158:1014–1019 Westendorp MO, Frank R, Ochsenbauer C et al (1995) Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 375:497–500. doi:10.1038/375497a0 Sastry KJ, Marin MC, Nehete PN, McConnell K, el-Naggar AK, McDonnell TJ (1996) Expression of human immunodeficiency virus type I tat results in down-regulation of bcl-2 and induction of apoptosis in hematopoietic cells. Oncogene 13:487–493 Bartz SR, Emerman M (1999) Human immunodeficiency virus type 1 Tat induces apoptosis and increases sensitivity to apoptotic signals by up-regulating FLICE/caspase-8. J Virol 73:1956–1963 Gibellini D, Re MC, Ponti C et al (2005) HIV-1 Tat protein concomitantly down-regulates apical caspase-10 and up-regulates c-FLIP in lymphoid T cells: a potential molecular mechanism to escape TRAIL cytotoxicity. J Cell Physiol 203:547–556. doi:10.1002/jcp. 20252 Li CJ, Friedman DJ, Wang C, Metelev V, Pardee AB (1995) Induction of apoptosis in uninfected lymphocytes by HIV-1 Tat protein. Science 268:429–431 (New York, NY) Westendorp MO, Shatrov VA, Schulze-Osthoff K et al (1995) HIV-1 Tat potentiates TNF-induced NF-kappa B activation and cytotoxicity by altering the cellular redox state. EMBO J 14:546–554 Creaven M, Hans F, Mutskov V et al (1999) Control of the histone-acetyltransferase activity of Tip60 by the HIV-1 transactivator protein, Tat. Biochemistry 38:8826–8830. doi:10.1021/bi9907274 Kruman II, Nath A, Mattson MP (1998) HIV-1 protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Exp Neurol 154:276–288. doi:10.1006/exnr.1998.6958 Chen D, Wang M, Zhou S, Zhou Q (2002) HIV-1 Tat targets microtubules to induce apoptosis, a process promoted by the pro-apoptotic Bcl-2 relative Bim. EMBO J 21:6801–6810. doi:10.1093/emboj/cdf683 Strack PR, Frey MW, Rizzo CJ et al (1996) Apoptosis mediated by HIV protease is preceded by cleavage of Bcl-2. Proc Natl Acad Sci USA 93:9571–9576. doi:10.1073/pnas.93.18.9571 Nie Z, Phenix BN, Lum JJ et al (2002) HIV-1 protease processes procaspase 8 to cause mitochondrial release of cytochrome c, caspase cleavage and nuclear fragmentation. Cell Death Differ 9:1172–1184. doi:10.1038/sj.cdd.4401094 Nie Z, Bren GD, Vlahakis SR et al (2007) Human immunodeficiency virus type 1 protease cleaves procaspase 8 in vivo. J Virol 81:6947–6956. doi:10.1128/JVI.02798-06 Gibbs JS, Lackner AA, Lang SM et al (1995) Progression to AIDS in the absence of a gene for vpr or vpx. J Virol 69:2378–2383 Cohen EA, Dehni G, Sodroski JG, Haseltine WA (1990) Human immunodeficiency virus vpr product is a virion-associated regulatory protein. J Virol 64:3097–3099 Lang SM, Weeger M, Stahl-Hennig C et al (1993) Importance of vpr for infection of rhesus monkeys with simian immunodeficiency virus. J Virol 67:902–912 Levy DN, Refaeli Y, Weiner DB (1995) Extracellular Vpr protein increases cellular permissiveness to human immunodeficiency virus replication and reactivates virus from latency. J Virol 69:1243–1252 Bachand F, Yao XJ, Hrimech M, Rougeau N, Cohen EA (1999) Incorporation of Vpr into human immunodeficiency virus type 1 requires a direct interaction with the p6 domain of the p55 gag precursor. J Biol Chem 274:9083–9091. doi:10.1074/jbc.274.13.9083 Kamata M, Aida Y (2000) Two putative alpha-helical domains of human immunodeficiency virus type 1 Vpr mediate nuclear localization by at least two mechanisms. J Virol 74:7179–7186. doi:10.1128/JVI.74.15.7179-7186.2000 Lu YL, Spearman P, Ratner L (1993) Human immunodeficiency virus type 1 viral protein R localization in infected cells and virions. J Virol 67:6542–6550 Mahalingam S, Collman RG, Patel M, Monken CE, Srinivasan A (1995) Functional analysis of HIV-1 Vpr: identification of determinants essential for subcellular localization. Virology 212:331–339. doi:10.1006/viro.1995.1490 Subbramanian RA, Kessous-Elbaz A, Lodge R et al (1998) Human immunodeficiency virus type 1 Vpr is a positive regulator of viral transcription and infectivity in primary human macrophages. J Exp Med 187:1103–1111. doi:10.1084/jem.187.7.1103 Heinzinger NK, Bukinsky MI, Haggerty SA et al (1994) The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc Natl Acad Sci USA 91:7311–7315. doi:10.1073/pnas.91.15.7311 Gallay P, Hope T, Chin D, Trono D (1997) HIV-1 infection of nondividing cells through the recognition of integrase by the importin/karyopherin pathway. Proc Natl Acad Sci USA 94:9825–9830. doi:10.1073/pnas.94.18.9825 Bukrinsky MI, Sharova N, McDonald TL, Pushkarskaya T, Tarpley WG, Stevenson M (1993) Association of integrase, matrix, and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection. Proc Natl Acad Sci USA 90:6125–6129. doi:10.1073/pnas.90.13.6125 Zennou V, Petit C, Guetard D, Nerhbass U, Montagnier L, Charneau P (2000) HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 101:173–185. doi:10.1016/S0092-8674(00)80828-4 Popov S, Rexach M, Ratner L, Blobel G, Bukrinsky M (1998) Viral protein R regulates docking of the HIV-1 preintegration complex to the nuclear pore complex. J Biol Chem 273:13347–13352. doi:10.1074/jbc.273.21.13347 Connor RI, Chen BK, Choe S, Landau NR (1995) Vpr is required for efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes. Virology 206:935–944. doi:10.1006/viro.1995.1016 Eckstein DA, Sherman MP, Penn ML et al (2001) HIV-1 Vpr enhances viral burden by facilitating infection of tissue macrophages but not nondividing CD4 + T cells. J Exp Med 194:1407–1419. doi:10.1084/jem.194.10.1407 Westervelt P, Henkel T, Trowbridge DB et al (1992) Dual regulation of silent and productive infection in monocytes by distinct human immunodeficiency virus type 1 determinants. J Virol 66:3925–3931 Levy DN, Refaeli Y, Weiner DB (1995) The vpr regulatory gene of HIV. Curr Top Microbiol Immunol 193:209–236 Mahalingam S, Ayyavoo V, Patel M et al (1998) HIV-1 Vpr interacts with a human 34-kDa mov34 homologue, a cellular factor linked to the G2/M phase transition of the mammalian cell cycle. Proc Natl Acad Sci USA 95:3419–3424. doi:10.1073/pnas.95.7.3419 He J, Choe S, Walker R, Di Marzio P, Morgan DO, Landau NR (1995) Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J Virol 69:6705–6711 Jowett JB, Planelles V, Poon B, Shah NP, Chen ML, Chen IS (1995) The human immunodeficiency virus type 1 vpr gene arrests infected T cells in the G2 + M phase of the cell cycle. J Virol 69:6304–6313 Goh WC, Rogel ME, Kinsey CM et al (1998) HIV-1 Vpr increases viral expression by manipulation of the cell cycle: a mechanism for selection of Vpr in vivo. Nat Med 4:65–71. doi:10.1038/nm0198-065 Stewart SA, Poon B, Jowett JB, Chen IS (1997) Human immunodeficiency virus type 1 Vpr induces apoptosis following cell cycle arrest. J Virol 71:5579–5592 Stewart SA, Poon B, Song JY, Chen IS (2000) Human immunodeficiency virus type 1 vpr induces apoptosis through caspase activation. J Virol 74:3105–3111. doi:10.1128/JVI.74.7.3105-3111.2000 Ayyavoo V, Mahalingam S, Rafaeli Y et al (1997) HIV-1 viral protein R (Vpr) regulates viral replication and cellular proliferation in T cells and monocytoid cells in vitro. J Leukoc Biol 62:93–99 Muthumani K, Choo AY, Hwang DS et al (2003) Mechanism of HIV-1 viral protein R-induced apoptosis. Biochem Biophys Res Commun 304:583–592. doi:10.1016/S0006-291X(03)00631-4 Muthumani K, Hwang DS, Desai BM et al (2002) HIV-1 Vpr induces apoptosis through caspase 9 in T cells and peripheral blood mononuclear cells. J Biol Chem 277:37820–37831. doi:10.1074/jbc.M205313200 Poon B, Grovit-Ferbas K, Stewart SA, Chen IS (1998) Cell cycle arrest by Vpr in HIV-1 virions and insensitivity to antiretroviral agents. Science 281:266–269 (New York, NY) Patel CA, Mukhtar M, Pomerantz RJ (2000) Human immunodeficiency virus type 1 Vpr induces apoptosis in human neuronal cells. J Virol 74:9717–9726. doi:10.1128/JVI.74.20.9717-9726.2000 Piller SC, Jans P, Gage PW, Jans DA (1998) Extracellular HIV-1 virus protein R causes a large inward current and cell death in cultured hippocampal neurons: implications for AIDS pathology. Proc Natl Acad Sci USA 95:4595–4600. doi:10.1073/pnas.95.8.4595 Ayyavoo V, Mahboubi A, Mahalingam S et al (1997) HIV-1 Vpr suppresses immune activation and apoptosis through regulation of nuclear factor kappa B. Nat Med 3:1117–1123. doi:10.1038/nm1097-1117 Kino T, Gragerov A, Kopp JB, Stauber RH, Pavlakis GN, Chrousos GP (1999) The HIV-1 virion-associated protein vpr is a coactivator of the human glucocorticoid receptor. J Exp Med 189:51–62. doi:10.1084/jem.189.1.51 Jacotot E, Ravagnan L, Loeffler M et al (2000) The HIV-1 viral protein R induces apoptosis via a direct effect on the mitochondrial permeability transition pore. J Exp Med 191:33–46. doi:10.1084/jem.191.1.33 Jacotot E, Ferri KF, El Hamel C et al (2001) Control of mitochondrial membrane permeabilization by adenine nucleotide translocator interacting with HIV-1 viral protein rR and Bcl-2. J Exp Med 193:509–519. doi:10.1084/jem.193.4.509 Roumier T, Vieira HL, Castedo M et al (2002) The C-terminal moiety of HIV-1 Vpr induces cell death via a caspase-independent mitochondrial pathway. Cell Death Differ 9:1212–1219. doi:10.1038/sj.cdd.4401089 Moretti S, Marcellini S, Boschini A et al (2000) Apoptosis and apoptosis-associated perturbations of peripheral blood lymphocytes during HIV infection: comparison between AIDS patients and asymptomatic long-term non-progressors. Clin Exp Immunol 122:364–373. doi:10.1046/j.1365-2249.2000.01375.x Cao Y, Qin L, Zhang L, Safrit J, Ho DD (1995) Virologic and immunologic characterization of long-term survivors of human immunodeficiency virus type 1 infection. N Engl J Med 332:201–208. doi:10.1056/NEJM199501263320401 Gougeon ML, Lecoeur H, Dulioust A et al (1996) Programmed cell death in peripheral lymphocytes from HIV-infected persons: increased susceptibility to apoptosis of CD4 and CD8 T cells correlates with lymphocyte activation and with disease progression. J Immunol 156:3509–3520 Lum JJ, Cohen OJ, Nie Z et al (2003) Vpr R77Q is associated with long-term nonprogressive HIV infection and impaired induction of apoptosis. J Clin Invest 111:1547–1554 Gulick RM, Mellors JW, Havlir D et al (1997) Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. N Engl J Med 337:734–739. doi:10.1056/NEJM199709113371102 Hammer SM, Squires KE, Hughes MD et al (1997) A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. AIDS Clinical Trials Group 320 Study Team. N Engl J Med 337:725–733. doi:10.1056/NEJM199709113371101 Badley AD, Parato K, Cameron DW et al (1999) Dynamic correlation of apoptosis and immune activation during treatment of HIV infection. Cell Death Differ 6:420–432. doi:10.1038/sj.cdd.4400509 Kotler DP, Shimada T, Snow G et al (1998) Effect of combination antiretroviral therapy upon rectal mucosal HIV RNA burden and mononuclear cell apoptosis. AIDS 12:597–604. doi:10.1097/00002030-199806000-00008 Phenix BN, Lum JJ, Nie Z, Sanchez-Dardon J, Badley AD (2001) Antiapoptotic mechanism of HIV protease inhibitors: preventing mitochondrial transmembrane potential loss. Blood 98:1078–1085. doi:10.1182/blood.V98.4.1078 Weichold FF, Bryant JL, Pati S, Barabitskaya O, Gallo RC, Reitz MS Jr (1999) HIV-1 protease inhibitor ritonavir modulates susceptibility to apoptosis of uninfected T cells. J Hum Virol 2:261–269 Blanco J, Barretina J, Ferri KF et al (2003) Cell-surface-expressed HIV-1 envelope induces the death of CD4 T cells during GP41-mediated hemifusion-like events. Virology 305:318–329. doi:10.1006/viro.2002.1764 Vittecoq D, Jardel C, Barthelemy C, et al. (2002) Mitochondrial damage associated with long-term antiretroviral treatment: associated alteration or causal disorder? J Acquired Immune Defic Syndr 31:299–308