Development of Electrospun Chitosan-Polyethylene Oxide/Fibrinogen Biocomposite for Potential Wound Healing Applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Simons M, Annex BH, Laham RJ, Kleiman N, Henry T, Dauerman H et al (2002) Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2 double-blind, randomized, controlled clinical trial. Circulation 105(7):788–793
Lee KY, Peters MC, Mooney DJ (2003) Comparison of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in SCID mice. J Control Release 87(1):49–56
Post MJ, Laham R, Sellke FW, Simons M (2001) Therapeutic angiogenesis in cardiology using protein formulations. Cardiovasc Res 49(3):522–531
Sukarto A, Yu C, Flynn LE, Amsden BG (2012) Co-delivery of adipose-derived stem cells and growth factor-loaded microspheres in RGD-grafted N-methacrylate glycol chitosan gels for focal chondral repair. Biomacromolecules 13(8):2490–2502
Secco M, Bueno C Jr, Vieira NM, Almeida C, Pelatti M, Zucconi E et al (2013) Systemic delivery of human mesenchymal stromal cells combined with IGF-1 enhances muscle functional recovery in LAMA2 dy/2j dystrophic mice. Stem Cell Rev Rep 9(1):93–109
Pierce GF, Mustoe TA, Altrock BW, Deuel TF, Thomason A (1991) Role of platelet-derived growth factor in wound healing. J Cell Biochem 45:319–326
Drew AF, Liu H, Davidson JM, Daugherty CC, Degen JL (2001) Wound-healing defects in mice lacking fibrinogen. Blood 97(12):3691–3698
Passaretti D, Silverman RP, Huang W, Kirchhoff CH, Ashiku S, Randolph MA et al (2001) Cultured chondrocytes produce injectable tissue-engineered cartilage in hydrogel polymer. Tissue Eng 7(6):805–815
Cummings CL, Gawlitta D, Nerem RM, Stegemann JP (2004) Properties of engineered vascular constructs made from collagen, fibrin, and collagen–fibrin mixtures. Biomaterials 25:3699–3706
Shreiber DI, Enever PAJ, Tranquillo RT (2001) Effects of PDGF-BB on rat dermal fibroblast behavior in mechanically stressed and unstressed collagen and fibrin gels. Exp Cell Res 266:155–166
Ahmed Z, Underwood S, Brown RA (2000) Low concentrations of fibrinogen increase cell migration speed on fibronectin/fibrinogen composite cables. Cell Motil Cytoskeleton 46:6–16
Underwood S, Afoke A, Brown RA, Macleod AJ, Shamlou PA, Dunnill P (2000) Wet extrusion of fibronectin–fibrinogen cables for application in tissue engineering. Biotechnol Bioeng 73(4):295–305
Wnek GE, Carr ME, Simpson DG, Bowlin GL (2003) Electrospinning of nanofiber fibrinogen structures. Nano Lett 3(2):213–216
McManus MC, Boland ED, Koo HP, Barnes CP, Pawlowski KJ, Wnek GE et al (2006) Mechanical properties of electrospun fibrinogen structures. Acta Biomater 2(1):19–28
Cai N, Hou D, Luo X, Han C, Fu J, Zeng H et al (2016) Enhancing mechanical properties of polyelectrolyte complex nanofibers with graphene oxide nanofillers pretreated by polycation. Compos Sci Technol 135:128–136
Yuan TT, Jenkins PM, DiGeorge Foushee AM, Jockheck-Clark AR, Stahl JM (2016) Electrospun chitosan/polyethylene oxide nanofibrous scaffolds with potential antibacterial wound dressing applications. J Nanomater 2016:25
Cai N, Li C, Han C, Luo X, Shen L, Xue Y et al (2016) Tailoring mechanical and antibacterial properties of chitosan/gelatin nanofiber membranes with Fe3O4 nanoparticles for potential wound dressing application. Appl Surf Sci 369:492–500
He Y, Liu X, Tang X (2015) In vitro study of electrospun polycaprolactone/chitosan nano fiber membrane guided bone regeneration. Shanghai J Stomatol 24(2):129–134
Balagangadharan K, Dhivya S, Selvamurugan N (2017) Chitosan based nanofibers in bone tissue engineering. Int J Biol Macromol 104:1372–1382
Mendes AC, Gorzelanny C, Halter N, Schneider SW, Chronakis IS (2016) Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery. Int J Pharm 510(1):48–56
Zhang C, Yuan H, Liu H, Chen X, Lu P, Zhu T et al (2015) Well-aligned chitosan-based ultrafine fibers committed teno-lineage differentiation of human induced pluripotent stem cells for Achilles tendon regeneration. Biomaterials 53:716–730
Gu BK, Park SJ, Kim MS, Lee YJ, Kim J-I, Kim C-H (2016) Gelatin blending and sonication of chitosan nanofiber mats produce synergistic effects on hemostatic functions. Int J Biol Macromol 82:89–96
Ignatova M, Manolova N, Rashkov I (2007) Novel antibacterial fibers of quaternized chitosan and poly(vinyl pyrrolidone) prepared by electrospinning. Eur Polym J 43(4):1112–1122
Zhang Y, Huang X, Duan B, Wu L, Li S, Yuan X (2007) Preparation of electrospun chitosan/poly(vinyl alcohol) membranes. Colloid Polym Sci 285(8):855–863
Wagner MS, Castner DG (2004) Analysis of adsorbed proteins by static time-of-flight secondary ion mass spectrometry. Appl Surf Sci 231:366–376
Schilke KF, McGuire J (2011) Detection of nisin and fibrinogen adsorption on poly(ethylene oxide) coated polyurethane surfaces by time-of-flight secondary ion mass spectrometry (TOF-SIMS). J Colloid Interface Sci 358(1):14–24
Chen J-P, Chang G-Y, Chen J-K (2008) Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids Surf. A 313:183–188
Charernsriwilaiwat N, Opanasopit P, Rojanarata T, Ngawhirunpat T (2012) Lysozyme-loaded, electrospun chitosan-based nanofiber mats for wound healing. Int J Pharm 427(2):379–384
He Y, Han D, Chen J, Ding Y, Jiang S, Hu C et al (2014) Highly strong and highly tough electrospun polyimide/polyimide composite nanofibers from binary blend of polyamic acids. RSC Adv 4(104):59936–59942
Zhao R, Li X, Sun B, Zhang Y, Zhang D, Tang Z et al (2014) Electrospun chitosan/sericin composite nanofibers with antibacterial property as potential wound dressings. Int J Biol Macromol 68:92–97
Zhang W, Zhong D, Liu Q, Zhang Y, Li N, Wang Q et al (2013) Effect of chitosan and carboxymethyl chitosan on fibrinogen structure and blood coagulation. J Biomed Sci 24(13):1549–1563
Yang J, Tian F, Wang Z, Wang Q, Zeng YJ, Chen SQ (2008) Effect of chitosan molecular weight and deacetylation degree on hemostasis. J Biomed Mater Res Part B 84(1):131–137
Whang HS, Kirsch W, Zhu YH, Yang CZ, Hudson SM (2005) Hemostatic agents derived from chitin and chitosan. J Macromol Sci 45(4):309–323
Toncheva A, Paneva D, Manolova N, Rashkov I, Mita L, Crispi S et al (2013) Dual vs. single spinneret electrospinning for the preparation of dual drug containing non-woven fibrous materials. Colloids Surf A. 439:176–183
Ding B, Kimura E, Sato T, Fujita S, Shiratori S (2004) Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning. Polymer 45(6):1895–1902
Thakur R, Florek C, Kohn J, Michniak B (2008) Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing. Int J Pharm 364(1):87–93
Gupta P, Wilkes GL (2003) Some investigations on the fiber formation by utilizing a side-by-side bicomponent electrospinning approach. Polymer 44(20):6353–6359
Nagaoka S, Kawakami H (1994) Inhibition of bacterial adhesion and biofilm formation by a heparinized hydrophilic polymer. ASAIO J 41(3):M365–M368
Korting H, Schöllmann C, White R (2011) Management of minor acute cutaneous wounds: importance of wound healing in a moist environment. J Eur Acad Dermatol Venereol 25(2):130–137
Field CK, Kerstein MD (1994) Overview of wound healing in a moist environment. Am J Surg 167(1):S2–S6
Lamke L-O, Liljedahl S-O (1971) Evaporative water loss from burns, grafts and donor sites. Scand J Plast Reconstr Surg 5(1):17–22
Wu P, Nelson E, Reid W, Ruckley C, Gaylor J (1996) Water vapour transmission rates in burns and chronic leg ulcers: influence of wound dressings and comparison with in vitro evaluation. Biomaterials 17(14):1373–1377
Xu R, Xia H, He W, Li Z, Zhao J, Liu B, et al (2016) Controlled water vapor transmission rate promotes wound-healing via wound re-epithelialization and contraction enhancement. Sci Rep 2016;6:24596
Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62(1):3–11
Younes I, Frachet V, Rinaudo M, Jellouli K, Nasri M (2016) Cytotoxicity of chitosans with different acetylation degrees and molecular weights on bladder carcinoma cells. Int J Biol Macromol 84:200–207
Jeong KJ, Song Y, Shin HR, Kim JE, Kim J, Sun F et al (2017) In vivo study on the biocompatibility of chitosan–hydroxyapatite film depending on degree of deacetylation. J Biomed Mater Res A 105(6):1637–1645
Chen J-P, Chen S-H, Lai G-J (2012) Preparation and characterization of biomimetic silk fibroin/chitosan composite nanofibers by electrospinning for osteoblasts culture. Nanoscale Res Lett 7(1):170
Macri L, Silverstein D, Clark RA (2007) Growth factor binding to the pericellular matrix and its importance in tissue engineering. Adv Drug Deliv Rev 59(13):1366–1381
Martino MM, Briquez PS, Ranga A, Lutolf MP, Hubbell JA (2013) Heparin-binding domain of fibrin (ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc Natl Acad Sci 110(12):4563–4568
Sahni A, Francis CW (2000) Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation. Blood 96(12):3772–3778
Thomopoulos S, Zaegel M, Das R, Harwood FL, Silva MJ, Amiel D et al (2007) PDGF-BB released in tendon repair using a novel delivery system promotes cell proliferation and collagen remodeling. J Orthop Res 25(10):1358–1368
Gamal AY, Mailhot JM (2000) The effect of local delivery of PDGF-BB on attachment of human periodontal ligament fibroblasts to periodontitis-affected root surfaces—in vitro. J Clin Periodontol 27(5):347–353
Thommen R, Humar R, Misevic G, Pepper MS, Hahn AW, John M et al (1997) PDGF-BB increases endothelial migration and cord movements during angiogenesis in vitro. J Cell Biochem 64(3):403–413
Gailit J, Clarke C, Newman D, Tonnesen MG, Mosesson MW, Clark RA (1997) Human fibroblasts bind directly to fibrinogen at RGD sites through integrin αvβ3. Exp Cell Res 232(1):118–126
Brown LF, Lanir N, McDonagh J, Tognazzi K, Dvorak AM, Dvorak HF (1993) Fibroblast migration in fibrin gel matrices. Am J Pathol 142(1):273
