Exact algorithm over an arc-time-indexed formulation for parallel machine scheduling problems

Mathematical Programming Computation - Tập 2 - Trang 259-290 - 2010
Artur Pessoa1, Eduardo Uchoa1, Marcus Poggi de Aragão2, Rosiane Rodrigues3,4
1Departamento de Engenharia de Produção, Universidade Federal Fluminense, Niterói, Brazil
2Departamento de Informática, PUC Rio de Janeiro, Rio de Janeiro, Brazil
3Departamento de Ciência da Computação, Universidade Federal do Amazonas, Manaus, Brazil
4COPPE-Engenharia de Sistemas e Computação, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

Tóm tắt

This paper presents an exact algorithm for the identical parallel machine scheduling problem over a formulation where each variable is indexed by a pair of jobs and a completion time. We show that such a formulation can be handled, in spite of its huge number of variables, through a branch cut and price algorithm enhanced by a number of practical techniques, including a dynamic programming procedure to fix variables by Lagrangean bounds and dual stabilization. The resulting method permits the solution of many instances of the P||∑w j T j problem with up to 100 jobs, and having 2 or 4 machines. This is the first time that medium-sized instances of the P||∑w j T j have been solved to optimality.

Tài liệu tham khảo

Avella P., Boccia M., D’Auria B.: Near-optimal solutions of large scale single-machine scheduling problems. ORSA J. Comput. 17, 183–191 (2005) Ben Amor H., Frangioni A., Desrosiers J.: On the choice of explicit stabilizing terms in column generation. Discrete Appl. Math. 157, 1167–1184 (2009) Bigras L., Gamache M., Savard G.: Time-indexed formulations and the total weighted tardiness problem. INFORMS J. Comput. 1, 133–142 (2008) Dash, S., Fukasawa, R., Gunluk, O.: On the generalized master knapsack polyhedron. In: Proceedings of the 12th IPCO Conference, Lecture Notes in Computer Science, vol. 4513, pp. 197–209 (2007) Dyer M., Wolsey L.: Formulating the single machine sequencing problem with release dates as a mixed integer program. Discrete Appl. Math. 26, 255–270 (1990) Fukasawa R., Longo H., Lysgaard J., Poggi de Aragão M., Reis M., Uchoa E., Werneck R.F.: Robust branch-and-cut-and-price for the capacitated vehicle routing problem. Math. Program. 106, 491–511 (2006) Irnich S., Desaulniers G., Desrosiers J., Hadjar A.: Path-reduced costs for eliminating arcs in routing and scheduling. INFORMS J. Comput. 22, 297–313 (2010) Lawler E.: A pseudopolynomial algorithm for sequencing jobs to minimize total tardiness. Ann. Discrete Math. 1, 331–342 (1977) Lemaréchal C.: Lagrangean relaxation. In: Juenger, M., Naddef, D. (eds) Computational Combinatorial Optimization, pp. 115–160. Springer, Berlin (2001) du Merle O., Villeneuve D., Desrosiers J., Hansen P.: Stabilized column generation. Discrete Math. 194, 229–237 (1999) Oukil A., Ben Amor H., Desrosiers J., El Gueddari H.: Stabilized column generation for highly degenerate multiple-depot vehicle scheduling problems. Comput. Oper. Res. 34, 817–834 (2007) Pan Y., Shi L.: On the equivalence of the max- min transportation lower bound and the time-indexed lower bound for single machine scheduling problems. Math. Program. 110, 543–559 (2007) Pessoa A., Poggi de Aragão M., Uchoa E.: Robust branch-cut-and-price algorithms for vehicle routing problems. In: Golden, B., Raghavan, S., Wasil, E. (eds) The Vehicle Routing Problem: Latest Advances and New Challenges, pp. 297–326. Springer, Berlin (2008) Pessoa A., Uchoa E., Poggi de Aragão M.: A robust branch-cut-and-price algorithm for the heterogeneous fleet vehicle routing problem. Networks 54, 167–177 (2009) Pessoa, A., Uchoa, E., Poggi de Aragão, M., Rodrigues, R.: Algorithms over arc-time indexed formulations for single and parallel machine scheduling problems. Tech. Rep. RPEP Vol.8 no.8, Universidade Federal Fluminense, Engenharia de Produção, Niterói, Brazil (2008) Pinedo M.: Scheduling: Theory, Algorithms, and Systems. Prentice-Hall, USA (2002) Poggi de Aragão M., Uchoa E.: Integer program reformulation for robust branch-and-cut-and-price. In: Wolsey, L. (eds) Annals of Mathematical Programming in Rio, pp. 56–61. Búzios, Brazil (2003) Potts C., Wassenhove L.: A branch-and-bound algorithm for the total weighted tardiness problem. Oper. Res. 32, 363–377 (1985) Queyranne, M., Schulz, A.: Polyhedral approaches to machine scheduling. Tech. Rep. 408, University of Berlin (1997) Rodrigues, R., Pessoa, A., Uchoa, E., Poggi de Aragão, M.: Heuristics for multi-machine weighted tardiness problems. Tech. Rep. RPEP Vol.8 no.11, Universidade Federal Fluminense, Engenharia de Produção, Niterói, Brazil (2008) Sadykov, R.: Integer programming-based decomposition approaches for solving machine scheduling problems. Ph.D. thesis, Universite Catholique de Louvain (2006) Souayah N., Kacem I., Haouari M., Chu C.: Scheduling on parallel identical machines to minimise the total weighted tardiness. Int. J. Adv. Oper. Manage. 1(1), 30–69 (2009) Sourd F.: New exact algorithms for one-machine earliness-tardiness scheduling. INFORMS J. Comput. 21, 167–175 (2009) Sousa J., Wolsey L.: A time indexed formulation of non-preemptive single machine scheduling problems. Math. Program. 54, 353–367 (1990) Tanaka S., Araki M.: A branch and bound algorithm with lagrangian relaxation to minimize total tardiness on identical parallel machines. Int. J. Prod. Econ. 113, 446–458 (2008) Tanaka S., Fujikuma S., Araki M.: An exact algorithm for single-machine scheduling without machine idle time. J. Sched. 12, 575–593 (2009) Uchoa E., Fukasawa R., Lysgaard J., Pessoa A., Poggi de Aragão M., Andrade D.: Robust branch-cut-and-price for the capacitated minimum spanning tree problem over a large extended formulation. Math. Program. 122, 443–472 (2008) Van der Akker J., Hurkens C., Savelsbergh M.: Time-indexed formulations for machine scheduling problems: column generation. INFORMS J. Comput. 12(2), 111–124 (2000) Van der Akker J., Van Hoesel C., Savelsbergh M.: A polyhedral approach to single-machine scheduling problems. Math. Program. 85, 541–572 (1999) Wentges P.: Weighted dantzig-wolfe decomposition for linear mixed-integer programming. Int. Trans. Oper. Res. 4, 151–162 (1997)