Mass spectrometry—Not just a structural tool: The use of guided ion beam tandem mass spectrometry to determine thermochemistry

American Chemical Society (ACS) - Tập 13 - Trang 419-434 - 2002
P. B. Armentrout1
1Department of Chemistry, University of Utah,Salt Lake City,

Tóm tắt

Guided ion beam tandem mass spectrometry has proved to be a robust tool for the measurement of thermodynamic information. Over the past twenty years, we have elucidated a number of factors necessary to make such thermochemistry accurate. Careful attention must be paid to the reduction of the raw data, ion intensities versus laboratory ion energies, to a more useful form, reaction cross sections versus relative kinetic energy. Analysis of the kinetic energy dependence of cross sections for endothermic reactions can then reveal thermodynamic data for both bimolecular and collision-induced dissociation (CID) processes. Such analyses need to include consideration of the explicit kinetic and internal energy distributions of the reactants, the effects of multiple collisions, the identity of the collision partner in CID processes, the kinetics of the reaction being studied, and competition between parallel reactions. This work provides examples illustrating the need to consider this multitude of effects along with details of the procedures developed in our group for handling each of them.

Tài liệu tham khảo

Lias, S. G.; Bartmess, J. E. In Gas-Phase Ion Thermochemistry. NIST Chemistry WebBook, NIST Standard Reference Database Number 69; Mallard, W. G.; Linstrom, P. J. Eds.; National Institute of Standards and Technology: Gaithersburg, 2000; (http://webbook.nist.gov). Talrose, V. L.; Vinogradov, P. S.; Larin, I. K. On the Rapidity of Ion-molecule Reactions. Bowers, M. T., Ed. In Gas Phase Ion Chemistry, Vol. I. Academic: New York, 1979; p 305–347. Armentrout, P. B. Thermochemical Measurements by Guided Ion Beam Mass Spectrometry. Adams, N. G.; Babcock, L. M., Eds. In Advances in Gas Phase Ion Chemistry, Vol. I. JAI: Greenwich, 1992; pp 83–119. Armentrout, P. B.; Halle, L. F.; Beauchamp, J. L. Reactions of Cr+, Mn+, Fe+, Co+, and Ni+ with O2 and N2O. Examination of the Translational Energy Dependence of the Cross Sections of Endothermic Reactions. J. Chem. Phys. 1982, 76, 2449–2457. Armentrout, P. B.; Simons, J. Understanding Heterolytic Bond Cleavage. J. Am. Chem. Soc. 1992, 114, 8627–8633. Ervin, K. M.; Armentrout, P. B. Translational Energy Dependence of Ar+ + XY 3 ArX+ + Y (XY = H2, D2, HD) from Thermal to 30 eV cm. J. Chem. Phys. 1985, 83, 166–189. Muntean, F.; Armentrout, P. B. Guided Ion Beam Study of Collision-Induced Dissociation Dynamics: Integral and Differential Cross Sections. J. Chem. Phys. 2001, 115, 1213–1228. Loh, S. K.; Hales, D. A.; Lian, L.; Armentrout, P. B. Collision-Induced Dissociation of Fen + (n = 2 – 10) with Xe: Ionic and Neutral Iron Cluster Binding Energies. J. Chem. Phys. 1989, 90, 5466–5485. Hansen, S. G.; Farrar, J. M.; Mahan, B. H. Dynamics of the Reaction of N+ with H2. V. Reactive and Nonreactive Scattering of N+(3P) at Relative Energies Below 3.6 eV. J. Chem. Phys. 1980, 73, 3750–3762. Gerlichm, D. Diplomarbeit, University of Freiburg, Federal Republic of Germany, 1971, p 1. Teloy, E.; Gerlich, D. Integral Cross Sections for Ion-molecule Reactions. I. The Guided Beam Technique. Chem. Phys. 1974, 4, 417–427. Gerlich, D. Inhomogeneous rf Fields: A Versatile Tool for the Study of Processes with Slow Ions. In State-Selected and State-to-State Ion-Molecule Reaction Dynamics. Part I, Experiment; Ng, C.-Y.; Baer, M., Eds.; 1992; pp 1–176. Chiu, Y.; Fu, H.; Huang, J.; Anderson, S. L. Vibrational Mode Effects, Scattering Dynamics, and Energy Disposal in Reaction of C2H +2 with Methane. J. Chem. Phys. 1995, 102, 1199–1216. Williams, S.; Chiu, Y.-H.; Levandier, D. J.; Dressler, R. A. Determination of Photofragment Ion Translational Energy and Angular Distributions in an Octopole Ion Guide: A Case Study of the Ar +2 and (N2O.H2O)+ Cluster Ions. J. Chem. Phys. 1998, 109, 7450–7461. Daly, N. R. Scintillation Type Mass Spectrometer Ion Detector. Rev. Sci. Instrum. 1960, 31, 264–267. Schultz, R. H.; Armentrout, P. B. Reactions of N +4 with Rare Gases from Thermal to 10 eV Center-of-Mass Energy: Collision-Induced Dissociation, Charge Transfer, and Ligand Exchange. Int. J. Mass Spectrom. Ion Processes 1991, 107, 29–48. Loh, S. K.; Hales, D. A.; Armentrout, P. B. A Continuous Source for Production of Cold, Mass-Selected Transition Metal Cluster Ions. Chem. Phys. Lett. 1986, 129, 527–532. Ervin, K. M.; Armentrout, P. B. Threshold Behavior of Endothermic Reactions: C+(2P) + H2 → CH+ + H. J. Chem. Phys. 1984, 80, 2978–2980. Huber, K. P.; Herzberg, G. Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules. Van Nostrand Reinhold: New York, 1979, pp 240, 262. Zhang, X.-G.; Rue, C.; Shin, S.-Y.; Armentrout, P. B. Reactions of Ta+ and W+ with H2, D2, and HD: Effect of Lanthanide Contraction and Spin-Orbit Interactions on Reactivity and Thermochemistry. J. Chem. Phys. Submitted for publication. Burley, J. D.; Ervin, K. M.; Armentrout, P. B. Translational Energy Dependence of O+(4S) + H2(D2, HD) → OH+(OD+) + H(D) from Thermal to 30 eV c.m. Int. J. Mass Spectrom. Ion Processes 1987, 80, 153–175. Schultz, R. H.; Armentrout, P. B. Hydrogen Atom Transfer Reactions of N +2 with H2, HD, and D2 from Thermal to 10 eV cm. J. Chem. Phys. 1992, 96, 1036–1045. Turner, B. R.; Fineman, M. A.; Stebbings, R. F. Crossed-Beam Investigation of N2D+ Production in N +2 -D2 Collisions. J. Chem. Phys. 1965, 42, 4088–4096. Hierl, P. M.; Strattan, L. W.; Wyatt, J. R. A Chemical Accelerator for the Study for the Dynamics of Ion-Molecule Reactions Over the Energy Range 0.1–100 eV. Int. J. Mass Spectrom. Ion Phys. 1972/3, 10, 385–403. Gioumousis, G.; Stevenson, D. P. Reactions of Gaseous Molecule Ions with Gaseous Molecules. V. Theory. J. Chem. Phys. 1958, 29, 294–299. Armentrout, P. B. The Kinetic Energy Dependence of Ion-Molecule Reactions: Guided Ion Beams and Threshold Measurements. Int. J. Mass Spectrom. 2000, 200, 219–241. Chesnavich, W. J.; Bowers, M. T. Theory of Translationally Driven Reactions. J. Phys. Chem. 1979, 83, 900. Stowe, G. F.; Schultz, R. H.; Wight, C. A.; Armentrout, P. B. Translational and Electronic Energy Dependence of S+ + H2(D2, HD) → SH+(SD+) + H(D). Spin-Allowed and Spin-Forbidden Pathways. Int. J. Mass Spectrom. Ion Processes 1990, 100, 177–195. Rue, C.; Armentrout, P. B.; Kretzschmar, I.; Schröder, D.; Harvey, J. N.; Schwarz, H. Kinetic-Energy Dependence of Competitive Spin-Allowed and Spin-Forbidden Reactions: V+ + CS2. J. Chem. Phys. 1999, 110, 7858–7870. Dressler, R. A.; Arnold, S. T.; Murad, E. Charge-Transfer Dynamics in Ion—Polyatomic Molecule Collisions: X+ + H2O (X = N, Kr) Luminescence Study. J. Chem. Phys. 1995, 103, 9989–10000. Landau, L. D. Non-Adiabatic Crossing of Energy Levels. Phys. Z. Sowjetunion 1932, 2, 46. Zener, C. Proc. R. Soc. London Ser. A 1932, 137, 696–702. Baer, T.; Hase, W. L. Unimolecular Reaction Dynamics. Oxford: New York, 1996; p 316 and references therein. Heller, E. J.; Brown, R. C. Radiationless Transitions in a New Light. J. Chem. Phys. 1983, 79, 3336–3351. Lorquet, J. C.; Leyh-Nihant, B. Nonadiabatic Unimolecular Reactions. 1. A Statistical Formulation for the Rate Constants. J. Phys. Chem. 1988, 92, 4778–4783. Chantry, P. J. Doppler Broadening in Beam Experiments. J. Chem. Phys. 1971, 55, 2746–2759. Lifshitz, C.; Wu, R. L. C.; Tiernan, T. O.; Terwilliger, D. T. Negative Ion-Molecule Reactions of Ozone and Their Implications on the Thermochemistry of O −3 . J. Chem. Phys. 1978, 68, 247–260. Ohanessian, G.; Brusich, M. J.; Goddard, W. A., III. Theoretical Study of Transition-Metal Hydrides. V. HfH+ Through HgH+, BaH+, and LaH+. J. Am. Chem. Soc. 1990, 112, 7179–7189. Weber, M. E.; Elkind, J. L.; Armentrout, P. B. Kinetic Energy Dependence of Al+ + O2 → A1O+ + O. J. Chem. Phys. 1986, 84, 1521–1529. Halle, L. F.; Armentrout, P. B.; Beauchamp, J. L. Formation of Chromium Carbene Ions by Reaction of Electronically Excited Chromium Ions with Methane in the Gas Phase. J. Am. Chem. Soc. 1981, 103, 962–963. Elkind, J. L.; Armentrout, P. B. Effect of Kinetic and Electronic Energy on the Reaction of V+ with H2, HD and D2. J. Phys. Chem. 1985, 89, 5626–5636. Elkind, J. L.; Armentrout, P. B. Effect of Kinetic and Electronic Energy on the Reactions of Mn+ with H2, HD, and D2. J. Chem. Phys. 1986, 84, 4862–4871. Elkind, J. L.; Armentrout, P. B. Effect of Kinetic and Electronic Energy on the Reactions of Fe+ with H2, HD, and D2: State-Specific Cross Sections for Fe+(6D) and Fe+(4F). J. Phys. Chem. 1986, 90, 5736–5745. Elkind, J. L.; Armentrout, P. B. Effect of Kinetic and Electronic Energy on the Reactions of Co+, Ni+, and Cu+ with H2, HD, and D2. J. Phys. Chem. 1986, 90, 6576–6586. Rue, C.; Armentrout, P. B.; Kretzschmar, I.; Schröder, D.; Schwarz, H. Guided Ion Beam Studies of the State-Specific Reactions of Cr+ and Mn+ with CS2 and COS. Int. J. Mass Spectrom. 2001, 210/211, 283–301. Sugar, J.; Corliss, C. Atomic Energy Levels of the Iron-Period Elements: Potassium Through Nickel. J. Phys. Chem. Ref. Data 1985, 14(Suppl. 2), 1–664. Freas, R. B.; Ridge, D. P. Characterization of Complexes of Butanes with Transition-Metal Atomic Ions in the Gas Phase. J. Am. Chem. Soc. 1980, 102, 7129–7131. Reents, W. D.; Strobel, F.; Freas, R. B.; Wronka, J.; Ridge, D. P. Chemical Reactions and Collisional Quenching of the Chromium Atomic Ion in a Metastable Excited State. J. Phys. Chem. 1985, 89, 5666–5670. Georgiadis, R.; Armentrout, P. B. Kinetic Energy Dependence of the Reactions of Ca+ and Zn+ with H2, D2, and HD. Effect of Empty versus Full d Orbitals. J. Phys. Chem. 1988, 92, 7060–7067. Fisher, E. R.; Armentrout, P. B. Activation of Alkanes by Cr+: Unique Reactivity of Ground State Cr+(6S) and Thermochemistry of Neutral and Ionic Chromium—Carbon Bonds. J. Am. Chem. Soc. 1992, 114, 2039–2049. Anderson, S. L. Multiphoton Ionization State Selection: Vibrational-Mode and Rotational-State Control. Adv. Chem. Phys. 1992, 82, 177–212. Schultz, R. H.; Crellin, K. C.; Armentrout, P. B. Sequential Bond Energies of Fe(CO)x + (x = 1–5): Systematic Effects on Collision-Induced Dissociation Measurements. J. Am. Chem. Soc. 1991, 113, 8590–8601. Rodgers, M. T.; Armentrout, P. B. Collision-Induced Dissociation Measurements on Li+(H2O)n, n = 1–6: The First Direct Measurement of the Li+-OH2 Bond Energy. J. Phys. Chem. A 1997, 101, 1238–1249. Dzidic, I.; Kebarle, P. Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n − 1 + H2O = M+(H2O)n. J. Phys. Chem. 1970, 74, 1466–1474. Feller, D.; Glendening, E. D.; Kendall, R. A.; Peterson, K. A. An Extended Basis Set ab Initio Study of Li+(H2O)n n = 1–6. J. Chem. Phys. 1994, 100, 4981–4997. Ervin, K. M.; Armentrout, P. B. Energy Dependence, Kinetic Isotope Effects, and Thermochemistry of the Nearly Thermoneutral Reactions of N+ + H2 3 NH+ + H. J. Chem. Phys. 1987, 86, 2659–2673. Sunderlin, L. S.; Armentrout, P. B. Rotational Temperature Dependence of the Reaction of N+ and C+ with H2, HD, and D2. J. Chem. Phys. 1994, 100, 5639–5645. Tosi, P.; Dimitriev, O.; Bassi, D.; Wick, O.; Gerlich, D. Experimental Observation of the Energy Threshold in the Ion-Molecule Reaction N+ + D2 → ND+ + D. J. Chem. Phys. 1994, 100, 4300–4307. Viggiano, A. A.; Morris, R. A. Rotational and Vibrational Energy Effects on Ion-Molecule Reactivity as Studied by the VT-SIFDT Technique. J. Phys. Chem. 1996, 100, 19227–19240. DeTuri, V. F.; Su, M. A.; Ervin, K. M. Dynamics of Endoergic Bimolecular Proton Transfer Reactions. F− + ROH → HF + RO− [R = H, CH3, CH3CH2, (CH3)2CH, and (CH3)3C]. J. Phys. Chem. A. 1999, 103, 1468–1479. DeTuri, V. F.; Ervin, K. M. Energetics of Endoergic Proton Transfer Reactions of Anions. J. Phys. Chem. A. Submitted for publication. van Koppen, P. A. M.; Bowers, M. T.; Beauchamp, J. L.; Dearden, D. V. Organometallic Reaction Energetics from Product Kinetic Energy Release Distributions. ACS Symposium Series 1990, 428, 34–54. Aristov, N.; Armentrout, P. B. Collision Induced Dissociation of Vanadium Monoxide Ion. J. Phys. Chem. 1986, 90, 5135–5140. Hales, D. A.; Armentrout, P. B. Effect of Internal Excitation on the Collision-Induced Dissociation and Reactivity of Co +2 . J. Cluster Science 1990, 1, 127–142. Dalleska, N. F.; Honma, K.; Sunderlin, L. S.; Armentrout, P. B. Solvation of Transition Metal Ions by Water. Sequential Binding Energies of M+(H2O)x, (x = 1–4) for M = Ti-Cu Determined by Collision-Induced Dissociation. J. Am. Chem. Soc. 1994, 116, 3519–3528. Andersen, A.; Muntean, F.; Walter, D.; Rue, C.; Armentrout, P. B. Collision-Induced Dissociation and Theoretical Studies of Mg+ Complexes with CO, CO2, NH3, CH4, CH3OH, and C6H6. J. Phys. Chem. A 2000, 104, 692–705. Tjelta, B. L.; Walter, D.; Armentrout, P. B. Determination of Weak Fe2-L Bond Energies (L = Ar, Kr, Xe, N2, CO2) by Ligand Exchange Reactions and Collision-Induced Dissociation. Int. J. Mass Spectrom. 2001, 204, 7–21. Khan, F. A.; Clemmer, D. E.; Schultz, R. H.; Armentrout, P. B. The Sequential Bond Energies of Cr(CO)x +, x = 1–6. J. Phys. Chem. 1993, 97, 7978–7987. Rodgers, M. T.; Ervin, K. M.; Armentrout, P. B. Statistical Modeling of Collision-Induced Dissociation Thresholds. J. Chem. Phys. 1997, 106, 4499–4508. Gilbert, R. G.; Smith, S. C. Theory of Unimolecular and Recombination Reactions. Blackwell Scientific Publications: Oxford, 1990, p 1. Lian, L.; Su, C.-X.; Armentrout, P. B. Collision-Induced Dissociation of Nin + (n = 2–18) with Xe: Bond Energies, Geometrical Structures, and Dissociation Pathways. J. Chem. Phys. 1992, 96, 7542–7554. Armentrout, P. B.; Hales, D. A.; Lian, L. Collision-Induced Dissociation of Transition Metal Cluster Ions. Duncan, M. A., Ed. In Advances in Metal and Semiconductor Clusters, Vol. II. JAI: Greenwich, 1994; pp 1–39. More, M. B.; Ray, D.; Armentrout, P. B. Intrinsic Affinities of Alkali Cations for 15-Crown-5 and 18-Crown-6: Bond Dissociation Energies of Gas-Phase M+-Crown Ether Complexes. J. Am. Chem. Soc. 1999, 121, 417–423. Armentrout, P. B. Cation-Ether Complexes in the Gas Phase: Thermodynamic Insight into Molecular Recognition. Int. J. Mass Spectrom. 1999, 193, 227–240. Glendening, E. D.; Feller, D.; Thompson, M. A. An ab Initio Investigation of the Structure and Alkali Metal Cation Selectivity of 18-Crown-6. J. Am. Chem. Soc. 1994, 116, 10657–10669. Shin, S.-Y.; Armentrout, P. B. Unpublished work. Rodgers, M. T.; Armentrout, P. B. Statistical Modeling of Competitive Threshold Collision-Induced Dissociation. J. Chem. Phys. 1998, 109, 1787–1800. Amicangelo, J. C.; Armentrout, P. B. Relative and Absolute Bond Dissociation Energies of Sodium Cation Complexes Determined Using Competitive Collision-Induced Dissociation Experiments. Int. J. Mass Spectrom. In press. Rodgers, M. T.; Armentrout, P. B. Absolute Binding Energies of Lithium Ions to Short Chain Alcohols. J. Phys. Chem. A 1997, 101, 2614–2625. Taft, R. W.; Anvia, F.; Gal, J.-F.; Walsh, S.; Capon, M.; Holmes, M. C.; Hosn, K.; Oloumi, G.; Vasanwala, R.; Yazdani, S. Free Energies of Cation-Molecule Complex Formation and of Cation-Solvent Transfers. Pure Appl. Chem. 1990, 62, 17–23. Armentrout, P. B.; Kickel, B. L. Gas-Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends. In Organometallic Ion Chemistry; Freiser, B. S., Ed.; Kluwer: Dordrecht, 1996; pp 1–45. Armentrout, P. B. Gas Phase Organometallic Chemistry. Brown, J. M.; Hofmann, P., Eds. In Organometallic Bonding and Reactivity. Topics in Organometallic Chemistry, Vol. IV. Springer-Verlag: Berlin, 1999; pp 1–45. Armentrout, P. B. Reactions and Thermochemistry of Small Transition Metal Cluster Ions. Ann. Rev. Phys. Chem. 2001, 52, 423–461. Rodgers, M. T.; Armentrout, P. B. Noncovalent Metal—Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation. Mass Spectrometry Reviews 2000, 19, 215–247. Kretzschmar, I.; Schröder, D.; Schwarz, H.; Armentrout, P. B. The Binding in Neutral and Cationic 3d and 4d Transition-Metal Monoxides and -Sulfides. In Advances in Metal and Semiconductor Clusters Vol. 5; Duncan, M. A., Ed.; JAI: Greenwich, 2001; pp 347–394.