Thermal expansion of andalusite and sillimanite at ambient pressure: a powder X-ray diffraction study up to 1000°C

Mineralogical Magazine - Tập 75 Số 2 - Trang 363-374 - 2011
Xiaomin Hu, Xi Liu, Qiang He, Huanjiong Wang, Shan Qin, Hanhu Liu, Chun‐Ming Wu, Chang Li

Tóm tắt

AbstractThe unit-cell parameters of andalusite and sillimanite have been measured by high-Tpowder X-ray diffraction up to 1000°C at ambient pressure. Within the temperature range investigated, all the unit-cell parameters varied smoothly, indicating no phase transition. The volume-temperature data were fitted with a polynomial expression for the thermal expansion coefficient (αT=a0+a1T+a2T-2). yieldinga0=2.55(2) × 10–5K–1,al=0 anda2=0 for andalusite, anda0=1.40(4) × 10–5K–1a1=7.1(8) × 10–9K–2anda2=0 for sillimanite. Using the new thermal expansion data determined in the present study and compressional data from the literature, theP-Tphase relations of the kyanite-andalusite-sillimanite system were calculated thermodynamically, with the invariant point located at ∼523°C and 3.93 kbar.

Từ khóa


Tài liệu tham khảo

10.1007/BF00199500

Hoisch, 1989, A muscovite-biotite geothermometer, American Mineralogist, 74, 565

Friedrich, 2004, High-pressure behavior of sillimanite and kyanite: compressibility, decomposition and indications of a new high-pressure phase, Zeitschrift für Kristallogrphie, 219, 324, 10.1524/zkri.219.6.324.34635

10.1016/j.pnsc.2009.04.001

10.2138/am.2006.1875

10.2475/ajs.259.9.651

Holdaway, 1993, A reevaluation of the stability relations of andalusite: thermochemical data and phase diagram for the alumino silicates, American Mineralogist, 78, 298

10.2138/am-1997-5-604

10.2138/am-2002-0404

Ren, 2007, On the protolith of the sillimanite gneisses in the Larsemann Hills, East Antarctica, Earth Science Frontiers, 14, 75

Hazen, 1982, Comparative Crystal Chemistry

Winkler, 2001, Calculation of the elastic constants of the Al2SiO5 polymorphs andalusite, sillimanite and kyanite, Zeitschrift für Kristallogrphie, 216, 67, 10.1524/zkri.216.2.67.20336

10.1515/9781501509094

10.1007/s00269-006-0122-x

10.2138/am-1997-5-603

10.2138/am-1998-1-201

10.1007/s002699900081

Irifune, 1995, The Earth's Central Part: Its Structure and Dynamics, 35

10.1016/j.gsf.2010.07.002

10.1021/ja01166a110

Winter, 1979, Thermal expansion and high-temperature crystal chemistry of the Al2SiO5 polymorphs, American Mineralogist, 64, 573

10.1007/s002690050084

10.2138/am-1997-5-602

10.2475/ajs.271.2.97

10.2138/am.2007.2492

10.1111/j.1525-1314.1985.tb00325.x

Beger, 1979, Aluminum-silicon ordering in sillimanite and mullite. PhD thesis, Harvard University, Massachusetts, USA, 312 pp. Berman R.G. (1988) Internally-consistent thermodynamic data forminer als in the system Na2O-K2OCaO- MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2, Journal of Petrology, 29, 445

Ren, 2009, Formation of sillimanite in the high-grade quartzofeldspathic gneisses and its relations with deformation-metamorphism-anatexis: a case study in the Larsemann Hills, East Antarctica, Acta Petrologica Sinica, 25, 1937

10.1007/BF00308117

10.1180/0026461067030334

Ralph, 1984, Compressibility and crystal structure of andalusite at high pressure, American Mineralogist, 69, 513

Robie, R.A. and Hemingway, B.S. (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar(105 pascals) pressure and at high temperatures. US Geological Survey Bulletin, 2131, 461 pp.

Zhou, 1999, Mineralogical characteristics and usage of macrocrystal andalusite from Xixia, Henan, Mineral Resources and Geology, 13, 40

10.1029/JB074i008p02089

10.1016/0012-821X(74)90100-9