Mutations in CDCA7 and HELLS cause immunodeficiency–centromeric instability–facial anomalies syndrome

Nature Communications - Tập 6 Số 1
Peter Thijssen1, Yuya Ito2, Giacomo Grillo3, Jun Wang1, Guillaume Velasco3, Hirohisa Nitta2, Motoko Unoki2, Minako Yoshihara4, Mikita Suyama4, Yu Sun1, Richard J.L.F. Lemmers1, Jessica C. de Greef1, Andrew R. Gennery5, Paolo Picco6, Barbara Kloeckener‐Gruissem7, Tayfun Güngör8, İsmail Reisli9, Capucine Pïcard10, Kamila Kébaïli11, Bertrand Roquelaure12, Tsuyako Iwai13, Ikuko Kondo14, Takeo Kubota15, Monique M. van Ostaijen-ten Dam16, Maarten J. D. van Tol16, Corry M.R. Weemaes17, Claire Francastel3, Silvère M. van der Maarel1, Hiroyuki Sasaki2
1Department of Human Genetics, Leiden University Medical Center, Leiden, 2333ZA, The Netherlands
2Division of Epigenomics and Development, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
3CNRS UMR7216, Epigenetics and Cell Fate, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75205, France
4Division of Bioinformatics, Department of Multi-scale Research Center for Medical Science, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
5Department of Paediatric Immunology, Newcastle Upon Tyne Hospital, NHS Foundation Trust, Newcastle Upon Tyne, UK
6Division of Pediatrics and Pediatric Rheumatology, G. Gaslini Scientific Institute, Genova, 16147, Italy
7Institute of Medical Molecular Genetics, University of Zurich, Schlieren, 8952, Switzerland
8Department of Oncology, University Children's Hospital, Zurich, 8032, Switzerland
9Department of Pediatric Immunology and Allergy, Necmettin Erbakan University, Meram Medical Faculty, Konya, 42080, Turkey
10Centre de Référence Déficits Immunitaires Héréditaires, AP-HP, Paris, 75743, France
11Centre de Référence Déficits Immunitaires Héréditaires, Institut d'Hématologie et d'Oncologie Pédiatrique, CHU de Lyon, Lyon, 69008, France
12Service d'hépato-gastro-entérologie et nutrition, endocrinologie et néphrologie pédiatriques, Hôpital de la Timone, CHU Marseille, Marseille, 13385, France
13Department of Pediatric Hematology and Oncology, Shikoku Medical Center for Children and adults, Kagawa, 765-8507, Japan
14Department of Pediatrics, Ooida Hospital, Kochi, 788-0001, Japan
15Department of Epigenetic Medicine, Faculty of Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, 409-3898, Japan
16Department of Pediatrics, Laboratory for Immunology, Leiden University Medical Center, Leiden, 2333ZA, The Netherlands
17Department of Pediatric Infectious Diseases and Immunology, Radboud University Nijmegen Medical Center, Nijmegen, 6500HC, The Netherlands

Tóm tắt

AbstractThe life-threatening Immunodeficiency, Centromeric Instability and Facial Anomalies (ICF) syndrome is a genetically heterogeneous autosomal recessive disorder. Twenty percent of patients cannot be explained by mutations in the known ICF genes DNA methyltransferase 3B or zinc-finger and BTB domain containing 24. Here we report mutations in the cell division cycle associated 7 and the helicase, lymphoid-specific genes in 10 unexplained ICF cases. Our data highlight the genetic heterogeneity of ICF syndrome; however, they provide evidence that all genes act in common or converging pathways leading to the ICF phenotype.

Từ khóa


Tài liệu tham khảo

Hagleitner, M. M. et al. Clinical spectrum of immunodeficiency, centromeric instability and facial dysmorphism (ICF syndrome). J. Med. Genet. 45, 93–99 (2008).

Weemaes, C. M. et al. Heterogeneous clinical presentation in ICF syndrome: correlation with underlying gene defects. Eur. J. Hum. Genet. 21, 1219–1225 (2013).

Jeanpierre, M. et al. An embryonic-like methylation pattern of classical satellite DNA is observed in ICF syndrome. Hum. Mol. Genet 2, 731–735 (1993).

Tiepolo, L. et al. Multibranched chromosomes 1, 9, and 16 in a patient with combined IgA and IgE deficiency. Hum. Genet. 51, 127–137 (1979).

de Greef, J. C. et al. Mutations in ZBTB24 are associated with immunodeficiency, centromeric instability, and facial anomalies syndrome type 2. Am. J. Hum. Genet. 88, 796–804 (2011).

Jiang, Y. L. et al. DNMT3B mutations and DNA methylation defect define two types of ICF syndrome. Hum. Mutat. 25, 56–63 (2005).

Auclair, G., Guibert, S., Bender, A. & Weber, M. Ontogeny of CpG island methylation and specificity of DNMT3 methyltransferases during embryonic development in the mouse. Genome Biol. 15, 545 (2014).

Gowher, H. & Jeltsch, A. Molecular enzymology of the catalytic domains of the Dnmt3a and Dnmt3b DNA methyltransferases. J. Biol. Chem. 277, 20409–20414 (2002).

Moarefi, A. H. & Chedin, F. ICF syndrome mutations cause a broad spectrum of biochemical defects in DNMT3B-mediated de novo DNA methylation. J. Mol. Biol. 409, 758–772 (2011).

Nitta, H. et al. Three novel ZBTB24 mutations identified in Japanese and Cape Verdean type 2 ICF syndrome patients. J. Hum. Genet. 58, 455–460 (2013).

Lee, S. U. & Maeda, T. POK/ZBTB proteins: an emerging family of proteins that regulate lymphoid development and function. Immunol. Rev. 247, 107–119 (2012).

Velasco, G. et al. Germline genes hypomethylation and expression define a molecular signature in peripheral blood of ICF patients: implications for diagnosis and etiology. Orphanet. J. Rare. Dis. 9, 56 (2014).

Gill, R. M., Gabor, T. V., Couzens, A. L. & Scheid, M. P. The MYC-associated protein CDCA7 is phosphorylated by AKT to regulate MYC-dependent apoptosis and transformation. Mol. Cell Biol. 33, 498–513 (2013).

Guiu, J. et al. Identification of Cdca7 as a novel Notch transcriptional target involved in hematopoietic stem cell emergence. J. Exp. Med. 211, 2411–2423 (2014).

Chen, K., Ou, X. M., Wu, J. B. & Shih, J. C. Transcription factor E2F-associated phosphoprotein (EAPP), RAM2/CDCA7L/JPO2 (R1), and simian virus 40 promoter factor 1 (Sp1) cooperatively regulate glucocorticoid activation of monoamine oxidase B. Mol. Pharmacol. 79, 308–317 (2011).

Geiman, T. M. & Muegge, K. Lsh, an SNF2/helicase family member, is required for proliferation of mature T lymphocytes. Proc. Natl Acad. Sci. USA 97, 4772–4777 (2000).

Ren, J. et al. The ATP binding site of the chromatin remodeling homolog Lsh is required for nucleosome density and de novo DNA methylation at repeat sequences. Nucleic Acids Res. 43, 1444–1455 (2015).

Yu, W. et al. Genome-wide DNA methylation patterns in LSH mutant reveals de-repression of repeat elements and redundant epigenetic silencing pathways. Genome Res. 24, 1613–1623 (2014).

Zhu, H. et al. Lsh is involved in de novo methylation of DNA. EMBO J. 25, 335–345 (2006).

Ueda, Y. et al. Roles for Dnmt3b in mammalian development: a mouse model for the ICF syndrome. Development 133, 1183–1192 (2006).

Velasco, G. et al. Dnmt3b recruitment through E2F6 transcriptional repressor mediates germ-line gene silencing in murine somatic tissues. Proc. Natl Acad. Sci. USA 107, 9281–9286 (2010).

Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

Kloeckener-Gruissem, B., Betts, D. R., Zankl, A., Berger, W. & Gungor, T. A new and a reclassified ICF patient without mutations in DNMT3B and its interacting proteins SUMO-1 and UBC9. Am. J. Med. Genet. A 136, 31–37 (2005).

Kubota, T. et al. ICF syndrome in a girl with DNA hypomethylation but without detectable DNMT3B mutation. Am. J. Med. Genet. A 129A, 290–293 (2004).

Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).

McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).