Size Selection by Zebra Mussels (Dreissena polymoropha) Exposed to Microplastic Fibers

Water, Air, and Soil Pollution - Tập 234 - Trang 1-12 - 2023
Robert S. Stelzer1, Jackie A. Behrens1, Sarah Pascarella1, A. J. Paea1, Jessica R. Lucas1
1Department of Biology, University of Wisconsin Oshkosh, Oshkosh, USA

Tóm tắt

Plastic production is increasing rapidly at a global scale and microplastics are widely distributed in aquatic ecosystems and food webs. As filter feeders, bivalves present entry points for microplastics into food webs and numerous descriptive and experimental studies have addressed microplastic size selection by bivalves. However, much less is known about size selection of microplastic fibers by bivalves. This represents a gap in understanding of how microplastics impact bivalves and food webs, particularly given the numerical dominance of microplastic fibers in freshwater and marine ecosystems and in bivalve tissue. To address this gap, we tested two hypotheses: (1) the net accumulation of polyester fibers in zebra mussels (Dreissena polymoropha) is dependent on fiber size and (2) zebra mussel size impacts the amount of plastic fibers accumulated. We conducted two experiments to test these hypotheses. In the first experiment, we exposed zebra mussels to pink polyester fibers (PPF) of four different lengths (0.25–2.0 mm), offered separately. In the second experiment, we exposed mussels with PPF of three different lengths (0.25–1.0 mm) in a mixture. Both hypotheses were supported. In each experiment, PPF of the smallest size (0.25 mm) disproportionately accumulated in the mussels. In addition, PPF accumulation of 0.25 and 0.50 mm PPF increased as zebra mussel shell length increased. Our results have implications for how microplastic fibers in water columns may impact bivalves and their food webs and demonstrate that size distribution should be considered when sampling bivalves for microplastics in ecosystems.

Tài liệu tham khảo

Baroja, E., Christoforou, E., Lindström, J., & Spatharis, S. (2021). Effects of microplastics on bivalves: Are experimental settings reflecting conditions in the field? Marine Pollution Bulletin, 17, 112696. https://doi.org/10.1016/j.marpolbul.2021.112696 Bom, F. C., & Sá, F. (2021). Concentration of microplastics in bivalves of the environment: A systematic review. Environmental Monitoring and Assessment, 193, 846. https://doi.org/10.1007/s10661-021-09639-1 Bonifacio, P. S. B., Metillo, E. B., & Romano, E. F. (2022). Microplastic in sediments and ingestion rates in three edible bivalve mollusc species in a southern Philippine estuary. Water Air Soil Pollution, 233, 455. https://doi.org/10.1007/s11270-023-06094-1 Brehm, J., Wilde, M. V., Reiche, L., Leitner, L., Petran, B., Meinhart, M., Wieland, S., Ritschar, S., Schott, M., Boos, J., Frei, S., Kress, H., Senker, J., Greiner, A., Fröhlich, T., & Laforsch, C. (2022). In-depth characterization revealed polymer type and chemical content specific effects of microplastic on Dreissena bugensis. Journal of Hazardous Materials, 437, 129351. https://doi.org/10.1016/j.jhazmat.2022.129351 Brillant, M. G. S., & MacDonald, B. A. (2000). Postingestive selection in the sea scallop, Placopecten magellanicus (Gmelin): The role of particle size and density. Journal of Experimental Marine Biology and Ecology, 253(2), 211–227. https://doi.org/10.1016/S0022-0981(00)00258-6 Choi, J. S., Kim, K., Hong, S. H., Park, K., & Park, J. (2021). Impact of polyethylene terephthalate microfiber length on cellular responses in the Mediterranean mussel Mytilus galloprovincialis. Marine Environmental Research, 168, 105320. https://doi.org/10.1016/j.marenvres.2021.105320 Cole, M., Lindeque, P., Halsband, C., & Galloway, T. S. (2011). Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin, 62(12), 2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025 Cunningham, E. M., & Sigwart, J. D. (2019). Environmentally accurate microplastic levels and their absence from exposure studies. Integrative & Comparative Biology, 59(6), 1485–1496. https://doi.org/10.1093/icb/icz068 Davenport, J., Smith, R. J. J. W., & Packer, M. (2000). Mussels Mytilus edulis: Significant consumers and destroyers of mesozooplankton. Marine Ecology Progress Series, 198, 131–137. https://doi.org/10.3354/meps198131 Deng, H., Wei, R., Luo, W., Hu, L., Li, B., Di, Y., & Shi, H. (2020). Microplastic pollution in water and sediment in a textile industrial area. Environmental Pollution, 258, 113658. https://doi.org/10.1016/j.envpol.2019.113658 Ding, R., Tong, L., & Zhang, W. (2021). Microplastics in freshwater environments: Sources, fates and toxicity. Water Air and Soil Pollution, 232, 181. https://doi.org/10.1007/s11270-021-05081-8 Doucet, C. V., Labaj, A. L., & Kurek, J. (2021). Microfiber content in freshwater mussels from rural tributaries of the Saint John River. Canada. Water Air and Soil Pollution, 232, 32. https://doi.org/10.1007/s11270-020-04958-4 Eerkes-Medrano, D., Thompson, R. C., & Aldridge, D. C. (2015). Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Research, 75, 63–82. https://doi.org/10.1016/j.watres.2015.02.012 Granek, E. F., Brander, S. M., & Holland, E. B. (2020). Microplastics in aquatic organisms: Improving understanding and identifying research directions for the next decade. Limnology and Oceanography Letters, 5(1), 1–4. https://doi.org/10.1002/lol2.10145 Hamilton, D. J., Ankney, C. D., & Bailey, R. C. (1994). Predation of zebra mussels by diving ducks: An exclosure study. Ecology, 75(2), 521–531. https://doi.org/10.2307/1939555 Hoellein, T., Rovegno, C., Uhrin, A. V., Johnson, E., & Hollein, H. C. (2021). Microplastics in invasive freshwater mussels (Dreissena sp.): Spatiotemporal variation and occurrence with chemical contaminants. Frontiers in Marine Science, 8, 690401. https://doi.org/10.3389/fmars.2021.690401 Jamieson, A. J., Brooks, L. S. R., Reid, W. D. K., Piertney, S. B., Narayanaswamy, B. E., & Linley, T. D. (2019). Microplastics and synthetic particles ingested by deep-sea amphipods in six of the deepest marine ecosystems on Earth. Royal Society Open Science, 6(2), 180667. https://doi.org/10.1098/rsos.180667 Jong, M., Li, J., Noor, H. M., He, Y., & Gin, K. Y. (2022). Impacts of size-fractionation on toxicity of marine microplastics: Enhanced integrated biomarker assessment in the tropical mussels, Perna viridis. Science of the Total Environment, 835, 155459. https://doi.org/10.1016/j.scitotenv.2022.155459 Khan, M. B., & Prezant, R. S. (2018). Microplastic abundances in a mussel bed and ingestion by the ribbed marsh mussel Geukensia demissa. Marine Pollution Bulletin, 130, 67–75. https://doi.org/10.1016/j.marpolbul.2018.03.012 Kolandhasamy, P., Su, L., Li, J., Qu, X., Jabeen, K., & Shi, H. (2018). Adherence of microplastics to soft tissue of mussels: A novel way to uptake microplastics beyond ingestion. Science of the Total Environment, 610–611, 635–640. https://doi.org/10.1016/j.scitotenv.2017.08.053 Li, L., Su, L., Cai, H., Rochman, C. M., Li, Q., Kolandhasamy, P., Peng, J., & Shi, H. (2019). The uptake of microfibers by freshwater Asian clams (Corbicula fluminea) varies based upon physicochemical properties. Chemosphere, 221, 107–114. https://doi.org/10.1016/j.chemosphere.2019.01.024 Li, J., Wang, Z., Rotchell, J. M., Shen, X., Li, Q., & Zhu, J. (2021). Where are we? Towards an understanding of the selective accumulation of microplastics in mussels. Environmental Pollution, 286, 117543. https://doi.org/10.1016/j.envpol.2021.117543 Liu, Y., Li, R., Yu, J., Ni, F., Sheng, Y., Scircle, A., Cizdziel, J. V., & Zhou, Y. (2021). Separation and identification of microplastics in marine organisms by TGA-FTIR-GC/MS: A case study of mussels from coastal China. Environmental Pollution, 272, 115946. https://doi.org/10.1016/j.envpol.2020.115946 MacIsaac, H. J., Sprules, W. G., & Leach, J. H. (1991). Ingestion of small-bodied zooplankton by zebra mussels (Dreissena polymorpha): Can cannibalism on larvae influence population dynamics? Canadian Journal of Fisheries and Aquatic Sciences, 48(11), 2051–2060. https://doi.org/10.1139/f91-244 McNeish, R. E., Kim, L. H., Barrett, H. A., Mason, S. A., Kelly, J. J., & Hoellein, T. J. (2018). Microplastic in riverine fish is connected to species traits. Scientific Reports, 8, 11639. https://doi.org/10.1038/s41598-018-29980-9 Naddafi, R., & Rudstam, L. G. (2014). Predation on invasive zebra mussel, Dreissena polymorpha, by pumpkinseed sunfish, rusty crayfish, and round goby. Hydrobiologia, 721, 107–115. https://doi.org/10.1007/s10750-013-1653-z Patterson, J., Jeyasanta, K. I., Sathisha, N., Booth, A. M., & Edward, J. K. P. (2019). Profiling microplastics in the Indian edible oyster, Magallana bilineata collected from the Tuticorin coast, Gulf of Mannar, Southeastern India. Science of the Total Environment, 691, 727–735. https://doi.org/10.1016/j.scitotenv.2019.07.063 Phothakwanpracha, J., Lirdwitayaprasit, T., & Pairohakul, S. (2021). Effects of sizes and concentrations of different types of microplastics on bioaccumulation and lethality rate in the green mussel, Perna viridis. Marine Pollution Bulletin, 173, 112954. https://doi.org/10.1016/j.marpolbul.2021.112954 Phuong, N. N., Zalouk-Vergnoux, A., Kamari, A., Mouneyrac, C., Amiard, F., Poirier, L., & Lagarde, F. (2018). Quantification and characterization of microplastics in blue mussels (Mytilus edulis): Protocol setup and preliminary data on the contamination of the French Atlantic coast. Environmental Science and Pollution Research, 25, 6135–6144. https://doi.org/10.1007/s11356-017-8862-3 Ringwood, A. H. (2021). Bivalves as biological sieves: Bioreactivity pathways of microplastics and nanoplastics. The Biological Bulletin, 241(2), 185–195. https://doi.org/10.1086/716259 Ross, P. S., Chastain, S., Vassilenko, E., Etemadifar, A., Zimmermann, S., Quesnel, S., Eert, J., Solomon, E., Patankar, S., Posacka, A. M., & Williams, B. (2021). Pervasive distribution of polyester fibres in the Arctic Ocean is driven by Atlantic inputs. Nature Communications, 12, 106. https://doi.org/10.1038/s41467-020-20347 Scott, N., Porter, A., Santillo, D., Simpson, H., Lloyd-Williams, S., & Lewis, C. (2019). Particle characteristics of microplastics contaminating the mussel Mytilus edulis and their surrounding environments. Marine Pollution Bulletin, 146, 125–133. https://doi.org/10.1016/j.marpolbul.2019.05.041 Sonbhadra, S., & Pandey, L. M. (2023). Assessment of microplastics from surface water bodies: Challenges and future scopes. Water Air and Soil Pollution, 234, 80. https://doi.org/10.1007/s11270-023-06094-1 Tamburri, M. N., & Zimmer-Faust, R. K. (1996). Suspension feeding: Basic mechanisms controlling recognition and ingestion of larvae. Limnology and Oceanography, 41(6), 1188–1197. https://doi.org/10.4319/lo.1996.41.6.1188 Tuchman, N. C., Burks, R. L., Call, C. A., & Smarrelli, J. (2004). Flow rate and vertical position influence ingestion rates of colonial zebra mussels (Dreissena polymorpha). Freshwater Biology, 49(2), 191–198. https://doi.org/10.1046/j.1365-2426.2003.01176.x Van Cauwenberghe, L., Claessens, M., Vandegehuchte, M. B., & Janssen, C. R. (2015). Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environmental Pollution, 199, 10–17. https://doi.org/10.1016/j.envpol.2015.01.008 Wang, S., Hu, M., Zheng, J., Huang, W., Shang, Y., Fang, J. K., Shi, H., & Wang, Y. (2021). Ingestion of nano/micro plastic particles by the mussel Mytilus coruscus is size dependent. Chemosphere, 263, 127957. https://doi.org/10.1016/j.chemosphere.2020.127957 Ward, J. E., Zhao, S., Holohan, B. A., Mladinich, K. M., Griffin, T. W., Wozniak, J., & Shumway, S. E. (2019a). Selective ingestion and egestion of plastic particles by the blue mussel (Mytilus edulis) and Eastern oyster (Crassostrea virginica): Implications for using bivalves as bioindicators of microplastic pollution. Environmental Science & Technology, 53, 8776–8784. https://doi.org/10.1021/acs.est.9b02073 Ward, J. E., Rosa, M., & Shumway, S. E. (2019b). Capture, ingestion, and egestion of microplastics by suspension-feeding bivalves: A 40-year history. Anthropocene Coasts, 2(1), 39–49. https://doi.org/10.1139/anc-2018-0027 Wardlaw, C., & Prosser, R. S. (2020). Investigation of microplastics in freshwater mussels (Lasmigona costata) from the Grand River watershed in Ontario. Canada. Water Air and Soil Pollution, 231, 405. https://doi.org/10.1007/s11270-020-04741-5 Watzin, M. C., Joppe-Mercure, K., Rowder, J., Lancaster, B., & Bronson, L. (2008). Significant fish predation on zebra mussels Dreissena polymorpha in Lake Champlain, U.S.A. Journal of Fish Biology, 73(7), 1585–1599. https://doi.org/10.1111/j.1095-8649.2008.02033.x Wei, Q., Hu, C., Zhang, R., Gu, Y., Sun, A., Zhang, Z., Shi, X., Chen, J., & Wang, T. (2021). Comparative evaluation of high-density polyethylene and polystyrene microplastics pollutants: Uptake, elimination and effects in mussel. Marine Environmental Research, 169, 105329. https://doi.org/10.1016/j.marenvres.2021.105329 Wong, W. H., & Levinton, J. (2005). Consumption rates of two rotifer species by zebra mussels Dreissena polymorpha. Marine and Freshwater Behavior and Physiology, 38(3), 149–157. https://doi.org/10.1080/13638490500174699 Woods, M. N., Stack, M. E., Fields, D. M., Shaw, S. D., & Matrai, P. A. (2018). Microplastic fiber uptake, ingestion, and egestion rates in the blue mussel (Mytilus edulis). Marine Pollution Bulletin, 137, 638–645. https://doi.org/10.1016/j.marpolbul.2018.10.061 Young, B. L., Padilla, D. K., Schneider, D. W., & Hewett, S. W. (1996). The importance of size-frequency relationships for predicting ecological impact of zebra mussel populations. Hydrobiologia, 332, 151–158. https://doi.org/10.1007/BF00031920