Sesquiterpene emissions from vegetation: a review

Biogeosciences - Tập 5 Số 3 - Trang 761-777
T. Duhl1,2, Detlev Helmig2, Alex Guenther1
1Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, CO 80307, USA
2Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80309 USA

Tóm tắt

Abstract. This literature review summarizes the environmental controls governing biogenic sesquiterpene (SQT) emissions and presents a compendium of numerous SQT-emitting plant species as well as the quantities and ratios of SQT species they have been observed to emit. The results of many enclosure-based studies indicate that temporal SQT emission variations appear to be dominated mainly by ambient temperatures although other factors contribute (e.g., seasonal variations). This implies that SQT emissions have increased significance at certain times of the year, especially in late spring to mid-summer. The strong temperature dependency of SQT emissions also creates the distinct possibility of increasing SQT emissions in a warmer climate. Disturbances to vegetation (from herbivores and possibly violent weather events) are clearly also important in controlling short-term SQT emissions bursts, though the relative contribution of disturbance-induced emissions is not known. Based on the biogenic SQT emissions studies reviewed here, SQT emission rates among numerous species have been observed to cover a wide range of values, and exhibit substantial variability between individuals and across species, as well as at different environmental and phenological states. These emission rates span several orders of magnitude (10s–1000s of ng gDW-1 h−1). Many of the higher rates were reported by early SQT studies, which may have included artificially-elevated SQT emission rates due to higher-than-ambient enclosure temperatures and disturbances to enclosed vegetation prior to and during sample collection. When predicting landscape-level SQT fluxes, modelers must consider the numerous sources of variability driving observed SQT emissions. Characterizations of landscape and global SQT fluxes are highly uncertain given differences and uncertainties in experimental protocols and measurements, the high variability in observed emission rates from different species, the selection of species that have been studied so far, and ambiguities regarding controls over emissions. This underscores the need for standardized experimental protocols, better characterization of disturbance-induced emissions, screening of dominant plant species, and the collection of multiple replicates from several individuals within a given species or genus as well as a better understanding of seasonal dependencies of SQT emissions in order to improve the representation of SQT emission rates.

Từ khóa


Tài liệu tham khảo

Agelopoulos, N. G., Chamberlain, K., and Pickett, J. A.: Factors affecting volatile emissions of intact Potato plants, \\textitSolanum tuberosum: variability of quantities and stability of ratios, J. Chem. Ecol., 26, 497–511, 2000.

Arey, J., Crowley, D. E., Crowley, M., Resketo, M., and Lester, J.: Hydrocarbon emissions from natural vegetation in California's South Coast Air Basin, Atmos. Environ., 29, 2977–2988, 1995.

Arimura, G., Huber, D. P. W., and Bohlmann, J.: Forest tent caterpillars (\\textitMalacosoma disstria) induce local and systemic diurnal emissions of terpenoid volatiles in hybrid poplar (\\textitPopulus trichocarpa$\\times$\\textitdeltoides): cDNA cloning, functional characterization, and patterns of gene expression of (–)-germacrene D synthase, \\textitPtdTPS1, The Plant J., 37, 603–616, 2004.

Atkinson, R. and Arey, J.: Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review, Atmos. Environ., 37(Supp. No. 2), S197–S219, 2003.

Chen, F., Tholl, D., D'Auria, J.C., Farooq, A., Pichersky, E., and Gershenzon, J.: Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers, Plant Cell, 15, 481-494, 2003.

Ciccioli, P., Brancaleoni, E., Frattoni, M., Di Palo, V., Valentini, R., Tirone, G., Seufert, G., Bertin, N., Hansen, U., Csiky, O., Lenz, R., and Sharma, M.: Emission of reactive terpene compounds from orange orchards and their removal by within-canopy processes, J. Geophys. Res., 104, 8077–8094, 1999.

Degenhardt, D. C. and Lincoln, D. E.: Volatile emissions from an odorous plant in response to herbivory and methyl jasmonate exposure, J. Chem. Ecol., 32, 725–743, 2006.

Dement, W. A., Tyson, B. J., and Mooney, H. A.: Mechanism of monoterpene volatilization in \\textitSalvia mellifera, Phytochemistry, 14, 2555–2557, 1975.

De Moraes, C. M., Mescher, M. C., and Tumlinson, J. H.: Caterpillar-induced nocturnal plant volatiles repel conspecific females, Nature, 410, 577–580, 2001.

Dudareva, N., Andersson, S., Orlova, I., Gatto, N., Reichelt, M., Rhodes, D., Boland, W., and Gershenzon, J.: The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers, Proc. Natl. Acad. Sci., 102, 933-938, 2005.

Fehsenfeld, F., Calvert, J., Fall, R., Goldan, P., Guenther, A. B., Hewitt, C. N., Lamb, B., Liu, S., Trainer, M., Westberg, H., and Zimmerman, P.: Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry, Global Biogeochem. Cycles, 6, 389–430, 1992.

Fuentes, J. D., Lerdau, M., Atkinson, R., Baldocchi, D., Bottenheim, J. W., Ciccioli, P., Lamb, B., Geron, C., Gu, L., Guenther, A., Sharkey, T. D., and Stockwell, W.: Biogenic hydrocarbons in the atmospheric boundary layer~: a review, Bull. Amer. Met. Soc. 81, 1537–1575, 2000.

Geron, C., Guenther, A., Greenberg, J., Karl, T., and Rasmussen, R.: Biogenic volatile organic compound emissions from desert vegetation of the southwestern US, Atmos. Environ., 40, 1645–1660, 2006.

Gouinguené, S. P. and Turlings, T. C. J.: The effects of abiotic factors on induced volatile emissions in corn plants, Plant Phys., 129, 1296–1307, 2002.

Guenther, A. B., Zimmerman, P. R., Harley, P. C., Monson, R. K., and Fall, R.: Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses, J. Geophys. Res., 98, 12 609–12 617, 1993.

Guenther, A., Zimmerman, P., and Wildermuth, M.: Natural volatile organic compound emission rate estimates for U.S. woodland landscapes, Atmos. Environ., 28, 1197–1210, 1994.

Hakola, H., Laurila, T., Lindfors, V., Hellén, H., Gaman, A., and Rinne, J.: Variation of the VOC emission rates of birch species during the growing season, Boreal Environ. Res., 6, 237–249, 2001.

Hakola, H., Tarvainen, V., Bäck, J., Ranta, H., Bonn, B., Rinne, J., and Kulmala, M.: Seasonal variation of mono- and sesquiterpene emission rates of Scots Pine, Biogeosciences, 3, 93–101, 2006.

Hansen, U. and Seufert, G.: Terpenoid emission from \\textitCitrus sinensis (L.) OSBECK under drought stress, Phys. Chem. Earth (B), 24, 681–687, 1999.

Hansen, U. and Seufert, G.: Temperature and light dependence of $\\beta $-caryophyllene emission rates, J. Geophys. Res., 108, 4801, https://doi.org/10.1029/2003JD003853, 2003.

Harley, P., Guenther, A., and Zimmerman, P.: Effects of light, temperature and canopy position on net photosynthesis and isoprene emission from sweetgum (Liquidambar styraciflua) leaves, Tree Physiology, 16, 25–32, 1996.

Helmig, D., Klinger, L. F., Guenther, A., Vierling, L., Geron, C., and Zimmerman, P.: Biogenic volatile organic compound emissions (BVOCs): I. Identifications from three continental sites in the U.S., Chemosphere, 38, 2163–2187, 1999.

Helmig, D., Revermann, T., Pollmann, J., Kaltschmidt, O., Jiménez Hernández, A., Bocquet, F., and David, D.: Calibration system and analytical considerations for quantitative sesquiterpene measurements in air, J. Chrom. A, 1002, 193–211, 2003.

Helmig, D., Bocquet, F., Pollmann, J., and Revermann, T.: Analytical techniques for sesquiterpene emission rate studies in vegetation enclosure experiments, Atmos. Environ., 38, 557–572, 2004.

Helmig, D., Ortega, J., Guenther, A., Herrick, J., and Geron, C.: Sesquiterpene emissions from Loblolly Pine and their potential contribution to biogenic aerosol formation in the Southeastern US, Atmos. Environ., 40, 4150–4157, 2006.

Helmig, D., Ortega, J., Duhl, T., Tanner, D., Guenther, A., Harley, P., Wiedinmyer, C., Milford, J., and Sakulyanontvittaya, T.: Sesquiterpene emissions from pine trees – Identifications, emission rates, and flux estimates for the contiguous United States, Environ. Sci. Technol. 41, 1545–1553, 2007.

Helsper, J. P. F. G., Davies, J. A., Bouwmeester, H. J., Krol, A. F., and van Kampen, M. H.: Circadian rhythmicity in emission of volatile compounds by flowers of \\textitRosa hybrida L. cv. Honesty, Planta, 207, 88–95, 1998.

Holzke, C., Hoffmann, T., Jaeger, L., Koppmann, R., and Zimmer, W.: Diurnal and seasonal variation of monoterpene and sesquiterpene emissions from Scots Pine (\\textitPinus silvestris L.), Atmos. Environ., 40, 3174–3185, 2006.

Huber, D. P. W., Ralph, S., and Bohlmann, J.: Genomic hardwiring and phenotypic plasticity of terpenoid-based defenses in conifers, J. Chem. Ecol., 30, 2399–2418, 2004.

Kesselmeier, J. and Staudt, M.: Biogenic volatile organic compounds (VOC): an overview on emission, physiology, and ecology, J. Atmos. Chem., 33, 23–88, 1999.

Kesselmeier, J., Ciccioli, P., Kuhn, U., Stefani, P., Biesenthal, T., Rottenberger, S., Wolf, A., Vitullo, M., Valentini, R., Nobre, A., Kabat, P., and Andreae, M. O.: Volatile organic compound emissions in relation to plant carbon fixation and the terrestrial carbon budget, Global Biogeochem. Cycles, 16, 1126, https://doi.org/10.1029/2001GB001813, 2002.

Komenda, M., Parusel, E., Wedel, A., and Koppmann, R.: Measurements of biogenic VOC emissions: sampling, analysis and calibration, Atmos. Environ., 35, 2069–2080, 2001.

König, G., Brunda, M., Puxbaum, H., Hewitt, C. N., Duckham, S. C., and Rudolph, J.: Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected mid-European agricultural and natural plant species, Atmos. Environ., 29, 861–874, 1995.

Kulmala, M., Hari, P., Laaksonen, A., Vesala, T., and Viisanen, Y.: Research unit of physics, chemistry and biology of atmospheric composition and climate change: overview of recent results, Boreal Environ. Res., 10, 459–477, 2005.

Lathière, J., Hauglustaine, D. A., Friend, A. D., De Noblet-Ducoudrè, N., Viovy, N., and Folberth, G. A.: Impact of climate variability and land use changes on global biogenic volatile organic compound emissions, Atmos. Chem. Phys., 6, 2129–2146, 2006.

Maes, K. and Debergh, P. C.: Volatiles emitted from in vitro grown tomato shoots during abiotic and biotic stress, Plant Cell Tissue and Organ Culture, 75, 73–78, 2003.

Martin, D. M., Gershenzon, J., and Bohlmann, J.: Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce, Plant Phys., 132, 1586–1599, 2003.

Merfort, I.: Review of the analytical techniques for sesquiterpenes and sesquiterpene lactones, J. Chromatogr. A, 967, 115-130, 2002.

Ormeño, E., Fernandez, C., Bousquet-Mélou, A., Greff, S., Morin, E., Robles, C., Vila, B., and Bonin, G.: Monoterpene and sesquiterpene emissions of three Mediterranean species through calcareous and siliceous soils in natural conditions, Atmos. Environ., 41, 629-639, 2007a.

Ormeño, E., Mévy, J.P., Vila, B., Bousquet-Mélou, A., Greff, S., Bonin, G., and Fernandez, C.: Water deficit stress induces different monoterpene and sesquiterpene emission changes in Mediterranean species. Relationship between terpene emissions and plant water potential, Chemosphere, 67, 276-284, 2007b.

Pollmann, J., Ortega, J., and Helmig, D.: Analysis of atmospheric sesquiterpenes: Sampling losses and mitigation of ozone interferences, Environ. Sci. Technol., 39, 9620–9629, 2005.

Ruther, J. and Kleier, S.: Plant-plant signaling: Ethylene synergizes volatile emission in \\textitZea mays induced by exposure to (Z)-3-Hexen-1-ol, J. Chem. Ecol., 31, 2217–2222, 2005.

Ruuskanen, T. M., Hakola, H., Kajos, M. K., Hellén, H., Tarvainen, V., and Rinne, J.: Volatile organic compound emissions from Siberian larch, Atmos. Environ., 41, 5807-5812, 2007.

Schade G. W. and Goldstein, A. H.: Fluxes of oxygenated volatile organic compounds from a ponderosa pine plantation, J. Geophys. Res., 106, 3111–3123, 2001.

Schuh, G., Heiden, A. C., Hoffmann, Th., Kahl, J., Rockel, P., Rudolph, J., and Wildt, J.: Emissions of volatile organic compounds from Sunflower and Beech: dependence on temperature and light intensity, J. Atmos. Chem., 27, 291–318, 1997.

Tarvainen, V., Hakola, H., Hellén, H., Bäck, J., Hari, P., and Kulmala, M.: Temperature and light dependence of the VOC emissions of Scots Pine, Atmos. Chem. Phys., 5, 989–998, 2005.

Tholl, D., Chen, F., Petri, J., Gershenzon, J., and Pichersky, E.: Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers, Plant J., 42, 757-771, 2005.

Tholl, D., Boland, W., Hansel, A., Loreto, F., Röse, U.S.R., and Schnitzler, J.-P.: Practical approaches to plant volatile analysis, Plant J., 45, 540-560, 2006.

Turlings, T. C. J., Loughrin, J. H., McCall, P. J., Röse, U. S. R., Lewis, W. J., and Tumlinson, J. H.: How caterpillar-damaged plants protect themselves by attracting parasitic wasps, Proc. Natl. Acad. Sci., 92, 4169–4174, 1995.

Vuorinen, T., Nerg, A.-M., Ibrahim, M. A., Reddy, G. V. P., and Holopainen, J. K.: Emission of \\textitPlutella xylostella-induced compounds from cabbages grown at elevated CO2 and orientation behavior of the natural enemies, Plant Phys., 135, 1984–1992, 2004.

Vuorinen, T., Nerg, A.-M., Vapaavuori, E., and Holopainen, J. K.: Emission of volatile organic compounds from two silver birch (\\textitBetula pendula Roth) clones grown under ambient and elevated CO2 and different O3 concentrations, Atmos. Environ., 39, 1185–1197, 2005.

Zhang, Q.-H., Birgersson, G., Zhu, J., Löfstedt, C., Löfqvist, J., and Schlyter, F.: Leaf volatiles from nonhost deciduous trees: variation by tree species, season, and temperature, and electrophysiological activity in \\textitIps typographus, J. Chem. Ecol., 25, 1923–1943, 1999.