Mast cells in a murine lung ischemia-reperfusion model of primary graft dysfunction
Tóm tắt
Primary graft dysfunction (PGD), as characterized by pulmonary infiltrates and high oxygen requirements shortly after reperfusion, is the major cause of early morbidity and mortality after lung transplantation. Donor, recipient and allograft-handling factors are thought to contribute, although new insights regarding pathogenesis are needed to guide approaches to prevention and therapy. Mast cells have been implicated in ischemic tissue injury in other model systems and in allograft rejection, leading to the hypothesis that mast cell degranulation contributes to lung injury following reperfusion injury. We tested this hypothesis in a mouse model of PGD involving reversible disruption of blood flow to one lung. Metrics of injury included albumin permeability, plasma extravasation, lung histopathology, and mast cell degranulation. Responses were assessed in wild-type (Kit
+/+
) and mast cell-deficient (Kit
W-sh/W-sh
) mice. Because mouse lungs have few mast cells compared with human lungs, we also tested responses in mice with lung mastocytosis generated by injecting bone marrow-derived cultured mast cells (BMCMC). We found that ischemic lung responses of mast cell-deficient Kit
W-sh/W-sh
mice did not differ from those of Kit
+/+
mice, even after priming for injury using LPS. Degranulated mast cells were more abundant in ischemic than in non-ischemic BMCMC-injected Kit
W-sh/W-sh
lungs. However, lung injury in BMCMC-injected Kit
W-sh/W-sh
and Kit
+/+
mice did not differ in globally mast cell-deficient, uninjected Kit
W-sh/W-sh
mice or in wild-type Kit
+/+
mice relatively deficient in lung mast cells. These findings predict that mast cells, although activated in lungs injured by ischemia and reperfusion, are not necessary for the development of PGD.
Tài liệu tham khảo
Christie JD, Carby M, Bag R, Corris P, Hertz M, Weill D: Report of the ISHLT working group on primary lung graft dysfunction part II: definition. A consensus statement of the international society for heart and lung transplantation. J Heart Lung Transplant. 2005, 24: 1454-1459. 10.1016/j.healun.2004.11.049.
Lee JC, Christie JD: Primary graft dysfunction. Proc Am Thorac Soc. 2009, 6: 39-46. 10.1513/pats.200808-082GO.
Fisher AJ, Donnelly SC, Hirani N, Haslett C, Strieter RM, Dark JH, Corris PA: Elevated levels of interleukin-8 in donor lungs is associated with early graft failure after lung transplantation. Am J Respir Crit Care Med. 2001, 163: 259-265.
Calfee CS, Budev MM, Matthay MA, Church G, Brady S, Uchida T, Ishizaka A, Lara A, Ranes JL, de Camp MM, Arroliga AC: Plasma receptor for advanced glycation end-products predicts duration of ICU stay and mechanical ventilation in patients after lung transplantation. J Heart Lung Transplant. 2007, 26: 675-680. 10.1016/j.healun.2007.04.002.
Krenn K, Klepetko W, Taghavi S, Lang G, Schneider B, Aharinejad S: Recipient vascular endothelial growth factor serum levels predict primary lung graft dysfunction. Am J Transplant. 2007, 7: 700-706. 10.1111/j.1600-6143.2006.01673.x.
Abonia JP, Friend DS, Austen WG, Moore FD, Carroll MC, Chan R, Afnan J, Humbles A, Gerard C, Knight P, Kanaoka Y, Yasuda S, Morokawa N, Austen KF, Stevens RL, Gurish MF: Mast cell protease 5 mediates ischemia-reperfusion injury of mouse skeletal muscle. J Immunol. 2005, 174: 7285-7291. 10.4049/jimmunol.174.11.7285.
Bhattacharya K, Farwell K, Huang M, Kempuraj D, Donelan J, Papaliodis D, Vasiadi M, Theoharides TC: Mast cell deficient W/Wv mice have lower serum IL-6 and less cardiac tissue necrosis than their normal littermates following myocardial ischemia-reperfusion. Int J Immunopathol Pharmacol. 2007, 20: 69-74.
Singh M, Saini HK: Resident cardiac mast cells and ischemia-reperfusion injury. J Cardiovasc Pharmacol Therapeut. 2003, 8: 135-148. 10.1177/107424840300800207.
Yousem SA: The potential role of mast cells in lung allograft rejection. Hum Pathol. 1997, 28: 179-182. 10.1016/S0046-8177(97)90103-9.
Buvry A, Garbarg M, Dimitriadou V, Rouleau A, Newlands GF, Tavakoli R, Poaty V, Lockhart A, Schwartz JC, Frossard N: Phenotypic and quantitative changes in mast cells after syngeneic unilateral lung transplantation in the rat. Clin Sci (Lond). 1996, 91: 319-327.
Xu X, Golden JA, Dolganov G, Jones KD, Donnelly S, Weaver T, Caughey GH: Transcript signatures of lymphocytic bronchitis in lung allograft biopsy specimens. J Heart Lung Transplant. 2005, 24: 1055-1066. 10.1016/j.healun.2004.06.016.
Cruz AC, Hall TS, Jones KD, Edwards ST, Fang KC: Induction of mast cell activation and CC chemokine responses in remodeling tracheal allografts. Am J Respir Cell Mol Biol. 2004, 31: 154-161. 10.1165/rcmb.2003-0440OC.
Su M, Chi EY, Bishop MJ, Henderson WR: Lung mast cells increase in number and degranulate during pulmonary artery occlusion/reperfusion injury in dogs. Am Rev Respir Dis. 1993, 147: 448-456.
Vural KM, Liao H, Oz MC, Pinsky DJ: Effects of mast cell membrane stabilizing agents in a rat lung ischemia-reperfusion model. Ann Thorac Surg. 2000, 69: 228-232. 10.1016/S0003-4975(99)01052-8.
Gilles S, Zahler S, Welsch U, Sommerhoff CP, Becker BF: Release of TNF-alpha during myocardial reperfusion depends on oxidative stress and is prevented by mast cell stabilizers. Cardiovasc Res. 2003, 60: 608-616. 10.1016/j.cardiores.2003.08.016.
Malaviya R, Ikeda T, Ross E, Abraham SN: Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha. Nature. 1996, 381: 77-80. 10.1038/381077a0.
Huang C, Friend DS, Qiu WT, Wong GW, Morales G, Hunt J, Stevens RL: Induction of a selective and persistent extravasation of neutrophils into the peritoneal cavity by tryptase mouse mast cell protease 6. J Immunol. 1998, 160: 1910-1919.
Huang C, De Sanctis GT, O’Brien PJ, Mizgerd JP, Friend DS, Drazen JM, Brass LF, Stevens RL: Evaluation of the substrate specificity of human mast cell tryptase beta I and demonstration of its importance in bacterial infections of the lung. J Biol Chem. 2001, 276: 26276-26284. 10.1074/jbc.M102356200.
Mallen-St Clair J, Pham CT, Villalta SA, Caughey GH, Wolters PJ: Mast cell dipeptidyl peptidase I mediates survival from sepsis. J Clin Invest. 2004, 113: 628-634. 10.1172/JCI200419062.
Neely CF, Keith IM: A1 adenosine receptor antagonists block ischemia-reperfusion injury of the lung. Am J Physiol. 1995, 268: L1036-L1046.
Auchampach JA, Jin X, Wan TC, Caughey GH, Linden J: Canine mast cell adenosine receptors: cloning and expression of the A3 receptor and evidence that degranulation is mediated by the A2B receptor. Mol Pharmacol. 1997, 52: 846-860. 10.1124/mol.52.5.846.
Ferrero ME: Purinoceptors in inflammation: potential as anti-inflammatory therapeutic targets. Front Biosci (Landmark Ed). 2011, 16: 2172-2186. 10.2741/3846.
Wolters PJ, Mallen-St Clair J, Lewis CC, Villalta SA, Baluk P, Erle DJ, Caughey GH: Tissue-selective mast cell reconstitution and differential lung gene expression in mast cell-deficient Kit(W-sh)/Kit(W-sh) sash mice. Clin Exp Allergy. 2005, 35: 82-88. 10.1111/j.1365-2222.2005.02136.x.
Grimbaldeston MA, Chen CC, Piliponsky AM, Tsai M, Tam SY, Galli SJ: Mast cell-deficient W-sash c-kit mutant Kit W-sh/W-sh mice as a model for investigating mast cell biology in vivo. Am J Pathol. 2005, 167: 835-848. 10.1016/S0002-9440(10)62055-X.
Cyphert JM, Kovarova M, Koller BH: Unique populations of lung mast cells are required for antigen-mediated bronchoconstriction. Clin Exp Allergy. 2011, 41: 260-269. 10.1111/j.1365-2222.2010.03583.x.
Xu X, Zhang D, Zhang H, Wolters PJ, Killeen NP, Sullivan BM, Locksley RM, Lowell CA, Caughey GH: Neutrophil histamine contributes to inflammation in mycoplasma pneumonia. J Exp Med. 2006, 203: 2907-2917. 10.1084/jem.20061232.
Gersch C, Dewald O, Zoerlein M, Michael LH, Entman ML, Frangogiannis NG: Mast cells and macrophages in normal C57/BL/6 mice. Histochem Cell Biol. 2002, 118: 41-49.
Craig SS, DeBlois G, Schwartz LB: Mast cells in human keloid, small intestine, and lung by an immunoperoxidase technique using a murine monoclonal antibody against tryptase. Am J Pathol. 1986, 124: 427-435.
Looney MR, Su X, Van Ziffle JA, Lowell CA, Matthay MA: Neutrophils and their Fc gamma receptors are essential in a mouse model of transfusion-related acute lung injury. J Clin Invest. 2006, 116: 1615-1623. 10.1172/JCI27238.
Pipkorn U, Karlsson G, Enerback L: Phenotypic expression of proteoglycan in mast cells of the human nasal mucosa. Histochem J. 1988, 20: 519-525. 10.1007/BF01002650.
Wingren U, Enerback L: Mucosal mast cells of the rat intestine: a re-evaluation of fixation and staining properties, with special reference to protein blocking and solubility of the granular glycosaminoglycan. Histochem J. 1983, 15: 571-582. 10.1007/BF01954148.
Nigrovic PA, Gray DH, Jones T, Hallgren J, Kuo FC, Chaletzky B, Gurish M, Mathis D, Benoist C, Lee DM: Genetic inversion in mast cell-deficient (Wsh) mice interrupts corin and manifests as hematopoietic and cardiac aberrancy. Am J Pathol. 2008, 173: 1693-1701. 10.2353/ajpath.2008.080407.
Looney MR, Nguyen JX, Hu Y, Van Ziffle JA, Lowell CA, Matthay MA: Platelet depletion and aspirin treatment protect mice in a two-event model of transfusion-related acute lung injury. J Clin Invest. 2009, 119: 3450-3461.
Walczak-Drzewiecka A, Ratajewski M, Wagner W, Dastych J: HIF-1alpha is up-regulated in activated mast cells by a process that involves calcineurin and NFAT. J Immunol. 2008, 181: 1665-1672. 10.4049/jimmunol.181.3.1665.
Gulliksson M, Carvalho RF, Ulleras E, Nilsson G: Mast cell survival and mediator secretion in response to hypoxia. PLoS One. 2010, 5: e12360-10.1371/journal.pone.0012360.
de Perrot M, Liu M, Waddell TK, Keshavjee S: Ischemia-reperfusion-induced lung injury. Am J Respir Crit Care Med. 2003, 167: 490-511.
Alard P, Kurimoto I, Niizeki H, Doherty JM, Streilein JW: Hapten-specific tolerance induced by acute, low-dose ultraviolet B radiation of skin requires mast cell degranulation. Eur J Immunol. 2001, 31: 1736-1746. 10.1002/1521-4141(200106)31:6<1736::AID-IMMU1736>3.0.CO;2-T.
Lu LF, Lind EF, Gondek DC, Bennett KA, Gleeson MW, Pino-Lagos K, Scott ZA, Coyle AJ, Reed JL, Van Snick J, Strom TB, Zheng XX, Noelle RJ: Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature. 2006, 442: 997-1002. 10.1038/nature05010.
de Vries VC, Elgueta R, Lee DM, Noelle RJ: Mast cell protease 6 is required for allograft tolerance. Transplant Proc. 2010, 42: 2759-2762. 10.1016/j.transproceed.2010.05.168.
Itoh S, Nakae S, Velotta JB, Kosuge H, Connolly A, Tsai M, Adachi H, Galli SJ, Robbins RC, Fischbein MP: The role of recipient mast cells in acute and chronic cardiac allograft rejection in C57BL/6-KitW-sh/W-sh mice. J Heart Lung Transplant. 2010, 29: 401-409. 10.1016/j.healun.2009.08.019.
Warnecke G, Sommer SP, Gohrbandt B, Fischer S, Hohlfeld JM, Niedermeyer J, Haverich A, Struber M: Warm or cold ischemia in animal models of lung ischemia-reperfusion injury: is there a difference?. Thorac Cardiovasc Surg. 2004, 52: 174-179. 10.1055/s-2004-817977.
Seghaye MC, Duchateau J, Grabitz RG, Mertes J, Marcus C, Buro K, Messmer BJ, von Bernuth G: Histamine liberation related to cardiopulmonary bypass in children: possible relation to transient postoperative arrhythmias. J Thorac Cardiovasc Surg. 1996, 111: 971-981. 10.1016/S0022-5223(96)70373-2.
