Autologous Conditioned Serum in the Treatment of Orthopedic Diseases

BioDrugs - Tập 21 - Trang 323-332 - 2012
Peter Wehling1,2, Carsten Moser2,3, David Frisbie4, C. Wayne McIlwraith4, Christopher E. Kawcak4, Ruediger Krauspe3, Julio A. Reinecke5
1Centre for Molecular Orthopaedics, Düsseldorf, Germany
2Orthogen AG, Düsseldorf, Germany
3Department of Orthopaedics, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
4Department of Clinical Sciences, Equine Orthopedic Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, USA
5Orthogen Veterinary GmbH, Düsseldorf, Germany

Tóm tắt

The common strategies for the treatment of patients with orthopedic diseases do not address the underlying pathogenesis. Several biologically based, local therapies aiming to influence the cytokine imbalance are either in development or in the initial stages of clinical use. A method based on exposure of blood leukocytes to pyrogenfree surfaces (e.g. glass spheres) elicits an accumulation of anti-inflammatory cytokines, including interleukin-1 receptor antagonist, and several growth factors, including insulin-like growth factor-1, platelet-derived growth factor, and transforming growth factor-β1, in the liquid blood phase. Based on these observations, a new therapy using cell-free, autologous conditioned serum (ACS) from the incubation of whole blood with glass spheres was developed. The injection of ACS into affected tissue (s) has shown clinical effectiveness and safety in animal models and studies, as well as in human clinical studies, for the treatment of osteoarthritis, lumbar stenosis, disc prolapse, and muscle injuries.

Tài liệu tham khảo

Puett DW, Griffin MR. Published trials of nonmedicinal and noninvasive therapies for hip and knee osteoarthritis. Ann Intern Med 1994 Jul 15; 121 (2): 133–40 Buckwalter JA, Lohmander S. Operative treatment of osteoarthrosis: current practice and future development. J Bone Joint Surg Am 1994 Sep; 76 (9): 1405–18 Buckwalter JA, Mow VC, Ratcliffe A. Restoration of injured or degenerated articular cartilage. J Am Acad Orthop Surg 1994 Jul; 2 (4): 192–201 Bradley JD, Brandt KD, Katz BP, et al. Comparison of an antiinflammatory dose of ibuprofen, an analgesic dose of ibuprofen, and acetaminophen in the treatment of patients with osteoarthritis of the knee. N Engl J Med 1991 Jul 11; 325 (2): 87–91 Williams HJ, Ward JR, Egger MJ, et al. Comparison of naproxen and acetaminophen in a two-year study of treatment of osteoarthritis of the knee. Arthritis Rheum 1993 Sep; 36 (9): 1196–206 Dieppe P, Cushnaghan J, Jasani MK, et al. A two-year, placebo-controlled trial of non-steroidal anti-inflammatory therapy in osteoarthritis of the knee joint. Br J Rheumatol 1993 Jul; 32 (7): 595–600 March L, Irwig L, Schwarz J, et al. N of 1 trials comparing a non-steroidal antiinflammatory drug with paracetamol in osteoarthritis. BMJ 1994 Oct 22; 309 (6961): 1041–5; discussion 6 Langman MJ, Weil J, Wainwright P, et al. Risks of bleeding peptic ulcer associated with individual non-steroidal anti-inflammatory drugs. Lancet 1994 Apr 30; 343 (8905): 1075–8 Garcia Rodriguez LA, Jick H. Risk of upper gastrointestinal bleeding and perforation associated with individual non-steroidal anti-inflammatory drugs. Lancet 1994 Mar 26; 343 (8900): 769–72 Bateman DN, Kennedy JG. Non-steroidal anti-inflammatory drugs and elderly patients. BMJ 1995 Apr 1; 310 (6983): 817–8 Bellamy N, Campbell J, Robinson V, Gee T, Bourne R, Wells G. Intraarticular corticosteroid for treatment of osteoarthritis of the knee. Cochrane Database Syst Rev 2005 (2): CD005328 Baltzer AWA. Adverse event profile of NSAID in the treatment of musculoskeletal disorders. Z Orthop Ihre Grenzgeb 2003; 141: Oa369–71 Petrella RJ, Petrella M. A prospective, randomized, double-blind, placebo controlled study to evaluate the efficacy of intraarticular hyaluronic acid for osteoarthritis of the knee. J Rheumatol 2006 May; 33 (5): 951–6 Arrich J, Piribauer F, Mad P, et al. Intra-articular hyaluronic acid for the treatment of osteoarthritis of the knee: systematic review and meta-analysis. CMAJ 2005 Apr 12; 172 (8): 1039–43 Lo GH, LaValley M, McAlindon T, et al. Intra-articular hyaluronic acid in treatment of knee osteoarthritis: a meta-analysis. JAMA 2003 Dec 17; 290 (23): 3115–21 Wang CT, Lin J, Chang CJ, et al. Therapeutic effects of hyaluronic acid on osteoarthritis of the knee. A meta-analysis of randomized controlled trials. J Bone Joint Surg Am 2004 Mar; 86-A (3): 538–45 Bellamy N, Campbell J, Robinson V, et al. Viscosupplementation for the treatment of osteoarthritis of the knee. Cochrane Database Syst Rev 2005 (2): CD005321 Goldring MB. Osteoarthritis and cartilage: the role of cytokines. Curr Rheumatol Rep 2000 Dec; 2 (6): 459–65 Fukui N, Purple CR, Sandeil LJ. Cell biology of osteoarthritis: the chondrocyte’s response to injury. Curr Rheumatol Rep 2001 Dec; 3 (6): 496–505 Polisson R. Innovative therapies in osteoarthritis. Curr Rheumatol Rep 2001 Dec; 3 (6): 489–95 Dinarello CA, Thompson RC. Blocking IL-1: interleukin 1 receptor antagonist in vivo and in vitro. Immunol Today 1991 Nov; 12 (11): 404–10 Dinarello CA. Interleukin-1 and interleukin-1 antagonism. Blood 1991 Apr 15; 77 (8): 1627–52 Granowitz EV, Clark BD, Mancilla J, et al. Interleukin-1 receptor antagonist competitively inhibits the binding of interleukin-1 to the type II interleukin-1 receptor. J Biol Chem 1991 Aug 5; 266 (22): 14147–50 Firestein GS, Berger AE, Tracey DE, et al. IL-1 receptor antagonist protein production and gene expression in rheumatoid arthritis and osteoarthritis synovium. J Immunol 1992 Aug 1; 149 (3): 1054–62 Arend WP, Malyak M, Guthridge CJ, et al. Interleukin-1 receptor antagonist: role in biology. Annu Rev Immunol 1998; 16: 27–55 Arend WP, Welgus HG, Thompson RC, et al. Biological properties of recombinant human monocyte-derived interleukin 1 receptor antagonist. J Clin Invest 1990 May; 85 (5): 1694–7 Arend WP. Interleukin-1 receptor antagonist. Adv Immunol 1993; 54: 167–227 Arend WP, Malyak M, Smith Jr MF, et al. Binding of IL-1 alpha, IL-1 beta, and IL-1 receptor antagonist by soluble IL-1 receptors and levels of soluble IL-1 receptors in synovial fluids. J Immunol 1994 Nov 15; 153 (10): 4766–74 Arend WP, Malyak M, Bigler CF, et al. The biological role of naturally-occurring cytokine inhibitors. Br J Rheumatol 1991; 30Suppl. 2: 49–52 Arend WP, Joslin FG, Massoni RJ. Effects of immune complexes on production by human monocytes of interleukin 1 or an interleukin 1 inhibitor. J Immunol 1985 Jun; 134 (6): 3868–75 Arend WP, Leung DY. IgG induction of IL-1 receptor antagonist production by human monocytes. Immunol Rev 1994 Jun; 139: 71–8 Arend WP, Smith Jr MF, Janson RW, et al. IL-1 receptor antagonist and IL-1 beta production in human monocytes are regulated differently. J Immunol 1991 Sep 1; 147 (5): 1530–6 Meijer H, Reinecke J, Becker C, et al. The production of anti-inflammatory cytokines in whole blood by physico-chemical induction. Inflamm Res 2003 Oct; 52 (10): 404–7 Frisbie DD, Kawcak CE, Werpy NM, et al. Clinical, biochemical, and histologic effects of intra-articular administration of autologous conditioned serum in horses with experimentally induced osteoarthritis. Am J Vet Res 2007; 68: 290–6 Frisbie DD, Kawcak CE, Baxter GM, et al. Effects of 6alpha-methylprednisolone acetate on an equine osteochondral fragment exercise model. Am J Vet Res 1998 Dec; 59 (12): 1619–28 Frisbie DD, Kawcak CE, Trotter GW, et al. Effects of triamcinolone acetonide on an in vivo equine osteochondral fragment exercise model. Equine Vet J 1997 Sep; 29 (5): 349–59 Kawcak CE, Frisbie DD, Trotter GW, et al. Effects of intravenous administration of sodium hyaluronate on carpal joints in exercising horses after arthroscopic surgery and osteochondral fragmentation. Am J Vet Res 1997 Oct; 58 (10): 1132–40 Frisbie DD, Ghivizzani SC, Robbins PD, et al. Treatment of experimental equine osteoarthritis by in vivo delivery of the equine interleukin-1 receptor antagonist gene. Gene Ther 2002 Jan; 9 (1): 12–20 Frisbie DD, Kawcak CE, Werpy NM, et al. Clinical, biochemical, and histologic effects of intra-articular administration of autologous conditioned serum in horses with experimentally induced osteoarthritis. Am J Vet Res 2007 Mar; 68 (3): 290–6 Wright-Carpenter T, Opolon P, Appell HJ, et al. Treatment of muscle injuries by local administration of autologous conditioned serum: animal experiments using a muscle contusion model. Int J Sports Med 2004 Nov; 25 (8): 582–7 Wright-Carpenter T, Klein P, Schaferhoff P, et al. Treatment of muscle injuries by local administration of autologous conditioned serum: a pilot study on sportsmen with muscle strains. Int J Sports Med 2004 Nov; 25 (8): 588–93 Lefaucheur JP, Sebille A. Muscle regeneration following injury can be modified in vivo by immune neutralization of basic fibroblast growth factor, transforming growth factor beta 1 or insulin-like growth factor I. J Neuroimmunol 1995 Mar; 57 (1-2): 85–91 Moser C, Baltzer AWA, Jansen SA, et al. Autologous conditioned serum (ACS) compared to HA and saline injections for the treatment of knee OA [abstract podium no. 330]. American Academy of Orthopaedic Surgeons 74th Annual Meeting; 2007 Feb 14–18; San Diego (CA). Bellamy N, Bell MJ, Goldsmith CH, et al. Evaluation of WOMAC 20, 50, 70 response criteria in patients treated with hylan G-F 20 for knee osteoarthritis. Ann Rheum Dis 2005 Jun; 64 (6): 881–5 Altman R, Asch E, Bloch D, et al. Development of criteria for the classification and reporting of osteoarthritis: classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum 1986 Aug; 29 (8): 1039–49 Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis 1957 Dec; 16 (4): 494–502 Becker C, Heidersdorf S, Drewlo S, et al. Efficacy of epidural perineural injection with autologus conditioned serum for lumbar radicular compression: an investigator-initiated, prospective, double-blinded, reference-controlled study. Spine 2007; 17: 1803–8 Theodoridis T, Krämer J. Interleukin-1 Rezeptorantagonist-Protein in “Injektionstherapie an der Wirbelsäule”. Stuttgart: Georg Thieme Verlag, 2006: 37–40 Kraemer J, Ludwig J, Bickert U, et al. Lumbar epidural perineural injection: a new technique. Eur Spine J 1997; 6 (5): 357–61