Impact characteristics of pears
Tài liệu tham khảo
Abedi, 2013, Design and evaluation a pendulum device to study postharvest mechanical damage in fruits: bruise modeling of Red Delicious apple, AJCS, 7, 962
Ahmadi, 2016, Viscoelastic finite element analysis of the dynamic behavior of apple under impact loading with regard its different layers, Comput. Electron. Agric., 121, 1, 10.1016/j.compag.2015.11.017
Baritelle, 2000, Strain rate and size effects on pear tissue failure, Trans. ASAE, 43, 95, 10.13031/2013.2692
Baritelle, 2001, Commodity conditioning to reduce impact bruising, Postharv. Biol. Technol., 21, 331, 10.1016/S0925-5214(00)00154-X
Bentini, 2005, Mechanical properties of sugar beet roots, Trans. ASAE, 48, 1429, 10.13031/2013.19168
Bollen, 2001, A descriptor for damage susceptibility of population of produce, J. Agric. Eng. Res., 78, 391, 10.1006/jaer.2000.0642
Brusewitz, 1989, Impact parameters related to post harvest bruising of apples, Trans. ASAE, 32, 953, 10.13031/2013.31097
Brusewitz, 1991, Impact bruise resistance of peaches, Trans. ASAE, 34, 962, 10.13031/2013.31756
De Kleine, 2015, Evaluating a non-newtonian shear-thickening surface during fruit impacts, Trans. ASABE, 58, 907
Dintwa, 2008, Finite element method of the dynamic collision of apple fruit, Postharv. Biol. Technol., 49, 260, 10.1016/j.postharvbio.2008.01.012
Fluck, 1973, Impact testing of fruits and vegetables, Trans. ASAE, 16, 660, 10.13031/2013.37597
Gancarz, 2016, Correlation between cell size and blackspot of potato tuber parenchyma tissue after storage, Postharv. Biol. Technol., 117, 161, 10.1016/j.postharvbio.2016.03.004
Horabik, 2016, Parameters and contact model for DEM simulations of agricultural granular materials: a review, Biosyst. Eng., 147, 206, 10.1016/j.biosystemseng.2016.02.017
Horabik, 2017, Determination of the restitution coefficient of seeds and coefficient of visco-elastic Hertz contact models for DEM simulations, Biosyst. Eng., 161, 106, 10.1016/j.biosystemseng.2017.06.009
Jarimopas, 1990, Instrumentation for measuring the response of apples subjected to impact loading, Comput. Electron. Agric., 5, 255, 10.1016/0168-1699(90)90016-I
Komarnicki, 2016, Evaluation of bruise resistance of pears to impact load, Postharv. Biol. Technol., 114, 36, 10.1016/j.postharvbio.2015.11.017
Komarnicki, 2017, Determination of apple bruise resistance based on the surface pressure and contact area measurements under impact loads, Comput. Electron. Agric., 142, 155, 10.1016/j.compag.2017.08.028
Lewis, 2007, Development of engineering design tools to help reduce apple bruising, J. Food Eng., 83, 356, 10.1016/j.jfoodeng.2007.03.005
Liang, 2018, Optimized installation angle and distance of a grading channel for dried jujube fruit with a push-pull actuating mechanism, Comput. Electron. Agric., 150, 134, 10.1016/j.compag.2018.04.006
Lichtensteiger, 1988, Impact parameters of spherical viscoelastic objects and tomatoes, Trans. ASAE, 31, 595, 10.13031/2013.30753
Lu, 2007, Dropping bruise fragility and bruise boundary of apple fruit, Trans. ASABE, 50, 1323, 10.13031/2013.23609
Opara, 2007, Design and development of a new device for measuring susceptibility to impact damage of fresh produce, N. Z. J. Crop Hortic. Sci., 35, 245, 10.1080/01140670709510191
Pang, 1992, Bruising damage in apple-to-apple impact, J. Agric. Eng. Res., 52, 229, 10.1016/0021-8634(92)80063-X
Pang, 1994, Apple bruising thresholds for an instrumented sphere, Trans. ASAE, 37, 893, 10.13031/2013.28156
Polat, 2012, Selected mechanical properties and bruise susceptibility of nectarine fruit, Int. J. Food Prop., 15, 1369, 10.1080/10942912.2010.498546
Salarikia, 2017, Finite element analysis of the dynamic behavior of pear under impact loading, Inf. Process. Agric., 4, 64
Scheffler, 2018, A discrete element model (DEM) for predicting apple damage during handling, Biosyst. Eng., 172, 29, 10.1016/j.biosystemseng.2018.05.015
Stropek, 2013, The effect of drop height on bruising of selected apple varieties, Postharv. Biol. Technol., 85, 167, 10.1016/j.postharvbio.2013.06.002
Stropek, 2015, A new method for measuring impact related bruises in fruits, Postharv. Biol. Technol., 110, 131, 10.1016/j.postharvbio.2015.07.005
Stropek, 2016, Methodological aspects of determining apple mechanical properties during impact, Int. J. Food Prop., 19, 1325, 10.1080/10942912.2015.1063069
Stropek, 2016, Quantity assessment of plastic deformation energy under impact loading conditions of selected apple cultivars, Postharv. Biol. Technol., 115, 9, 10.1016/j.postharvbio.2015.12.011
Stropek, 2018, Viscoelastic response of apple flesh in a wide range of mechanical loading rates, Int. Agrophys., 32, 335, 10.1515/intag-2017-0023
Surdilovic, 2018, Impact characterization of agricultural products by fall trajectory simulation and measurement, Comput. Electron. Agric., 151, 460, 10.1016/j.compag.2018.06.009
Technical Manual, 2013
Van Zeebroeck, 2003, Determination of the dynamical behaviour of biological materials during impact using a pendulum device, J. Sound Vibr., 266, 465, 10.1016/S0022-460X(03)00579-0
Wang, 2017, Measurement and analysis of restitution coefficient between maize seed and soil based on high-speed photography, Int. J. Agric. Biol. Eng., 10, 102
Yao, 2017, Predicting bruise susceptibility in apples using Vis/SWNIR technique combined with ensemble learning, Int. J. Agric. Biol. Eng., 10, 144
Yu, 2014, Visual bruise assessment and analysis of mechanical impact measurement in southern highbush blueberries, Appl. Eng. Agric., 30, 29
Zhu, 2016, Predicting bruise susceptibility of’ Golden Delicious’ apples using hyperspectral scattering technique, Postharv. Biol. Technol., 114, 86, 10.1016/j.postharvbio.2015.12.007