Impact characteristics of pears

Postharvest Biology and Technology - Tập 147 - Trang 100-106 - 2019
Zbigniew Stropek1, Krzysztof Gołacki1
1Department of Mechanical Engineering and Automatic Control, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland

Tài liệu tham khảo

Abedi, 2013, Design and evaluation a pendulum device to study postharvest mechanical damage in fruits: bruise modeling of Red Delicious apple, AJCS, 7, 962 Ahmadi, 2016, Viscoelastic finite element analysis of the dynamic behavior of apple under impact loading with regard its different layers, Comput. Electron. Agric., 121, 1, 10.1016/j.compag.2015.11.017 Baritelle, 2000, Strain rate and size effects on pear tissue failure, Trans. ASAE, 43, 95, 10.13031/2013.2692 Baritelle, 2001, Commodity conditioning to reduce impact bruising, Postharv. Biol. Technol., 21, 331, 10.1016/S0925-5214(00)00154-X Bentini, 2005, Mechanical properties of sugar beet roots, Trans. ASAE, 48, 1429, 10.13031/2013.19168 Bollen, 2001, A descriptor for damage susceptibility of population of produce, J. Agric. Eng. Res., 78, 391, 10.1006/jaer.2000.0642 Brusewitz, 1989, Impact parameters related to post harvest bruising of apples, Trans. ASAE, 32, 953, 10.13031/2013.31097 Brusewitz, 1991, Impact bruise resistance of peaches, Trans. ASAE, 34, 962, 10.13031/2013.31756 De Kleine, 2015, Evaluating a non-newtonian shear-thickening surface during fruit impacts, Trans. ASABE, 58, 907 Dintwa, 2008, Finite element method of the dynamic collision of apple fruit, Postharv. Biol. Technol., 49, 260, 10.1016/j.postharvbio.2008.01.012 Fluck, 1973, Impact testing of fruits and vegetables, Trans. ASAE, 16, 660, 10.13031/2013.37597 Gancarz, 2016, Correlation between cell size and blackspot of potato tuber parenchyma tissue after storage, Postharv. Biol. Technol., 117, 161, 10.1016/j.postharvbio.2016.03.004 Horabik, 2016, Parameters and contact model for DEM simulations of agricultural granular materials: a review, Biosyst. Eng., 147, 206, 10.1016/j.biosystemseng.2016.02.017 Horabik, 2017, Determination of the restitution coefficient of seeds and coefficient of visco-elastic Hertz contact models for DEM simulations, Biosyst. Eng., 161, 106, 10.1016/j.biosystemseng.2017.06.009 Jarimopas, 1990, Instrumentation for measuring the response of apples subjected to impact loading, Comput. Electron. Agric., 5, 255, 10.1016/0168-1699(90)90016-I Komarnicki, 2016, Evaluation of bruise resistance of pears to impact load, Postharv. Biol. Technol., 114, 36, 10.1016/j.postharvbio.2015.11.017 Komarnicki, 2017, Determination of apple bruise resistance based on the surface pressure and contact area measurements under impact loads, Comput. Electron. Agric., 142, 155, 10.1016/j.compag.2017.08.028 Lewis, 2007, Development of engineering design tools to help reduce apple bruising, J. Food Eng., 83, 356, 10.1016/j.jfoodeng.2007.03.005 Liang, 2018, Optimized installation angle and distance of a grading channel for dried jujube fruit with a push-pull actuating mechanism, Comput. Electron. Agric., 150, 134, 10.1016/j.compag.2018.04.006 Lichtensteiger, 1988, Impact parameters of spherical viscoelastic objects and tomatoes, Trans. ASAE, 31, 595, 10.13031/2013.30753 Lu, 2007, Dropping bruise fragility and bruise boundary of apple fruit, Trans. ASABE, 50, 1323, 10.13031/2013.23609 Opara, 2007, Design and development of a new device for measuring susceptibility to impact damage of fresh produce, N. Z. J. Crop Hortic. Sci., 35, 245, 10.1080/01140670709510191 Pang, 1992, Bruising damage in apple-to-apple impact, J. Agric. Eng. Res., 52, 229, 10.1016/0021-8634(92)80063-X Pang, 1994, Apple bruising thresholds for an instrumented sphere, Trans. ASAE, 37, 893, 10.13031/2013.28156 Polat, 2012, Selected mechanical properties and bruise susceptibility of nectarine fruit, Int. J. Food Prop., 15, 1369, 10.1080/10942912.2010.498546 Salarikia, 2017, Finite element analysis of the dynamic behavior of pear under impact loading, Inf. Process. Agric., 4, 64 Scheffler, 2018, A discrete element model (DEM) for predicting apple damage during handling, Biosyst. Eng., 172, 29, 10.1016/j.biosystemseng.2018.05.015 Stropek, 2013, The effect of drop height on bruising of selected apple varieties, Postharv. Biol. Technol., 85, 167, 10.1016/j.postharvbio.2013.06.002 Stropek, 2015, A new method for measuring impact related bruises in fruits, Postharv. Biol. Technol., 110, 131, 10.1016/j.postharvbio.2015.07.005 Stropek, 2016, Methodological aspects of determining apple mechanical properties during impact, Int. J. Food Prop., 19, 1325, 10.1080/10942912.2015.1063069 Stropek, 2016, Quantity assessment of plastic deformation energy under impact loading conditions of selected apple cultivars, Postharv. Biol. Technol., 115, 9, 10.1016/j.postharvbio.2015.12.011 Stropek, 2018, Viscoelastic response of apple flesh in a wide range of mechanical loading rates, Int. Agrophys., 32, 335, 10.1515/intag-2017-0023 Surdilovic, 2018, Impact characterization of agricultural products by fall trajectory simulation and measurement, Comput. Electron. Agric., 151, 460, 10.1016/j.compag.2018.06.009 Technical Manual, 2013 Van Zeebroeck, 2003, Determination of the dynamical behaviour of biological materials during impact using a pendulum device, J. Sound Vibr., 266, 465, 10.1016/S0022-460X(03)00579-0 Wang, 2017, Measurement and analysis of restitution coefficient between maize seed and soil based on high-speed photography, Int. J. Agric. Biol. Eng., 10, 102 Yao, 2017, Predicting bruise susceptibility in apples using Vis/SWNIR technique combined with ensemble learning, Int. J. Agric. Biol. Eng., 10, 144 Yu, 2014, Visual bruise assessment and analysis of mechanical impact measurement in southern highbush blueberries, Appl. Eng. Agric., 30, 29 Zhu, 2016, Predicting bruise susceptibility of’ Golden Delicious’ apples using hyperspectral scattering technique, Postharv. Biol. Technol., 114, 86, 10.1016/j.postharvbio.2015.12.007