Domain III from class II fusion proteins functions as a dominant-negative inhibitor of virus membrane fusion

Journal of Cell Biology - Tập 171 Số 1 - Trang 111-120 - 2005
Maofu Liao1, Margaret Kielian2
1Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
2Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461

Tóm tắt

Alphaviruses and flaviviruses infect cells through low pH-dependent membrane fusion reactions mediated by their structurally similar viral fusion proteins. During fusion, these class II viral fusion proteins trimerize and refold to form hairpin-like structures, with the domain III and stem regions folded back toward the target membrane-inserted fusion peptides. We demonstrate that exogenous domain III can function as a dominant-negative inhibitor of alphavirus and flavivirus membrane fusion and infection. Domain III binds stably to the fusion protein, thus preventing the foldback reaction and blocking the lipid mixing step of fusion. Our data reveal the existence of a relatively long-lived core trimer intermediate with which domain III interacts to initiate membrane fusion. These novel inhibitors of the class II fusion proteins show cross-inhibition within the virus genus and suggest that the domain III–core trimer interaction can serve as a new target for the development of antiviral reagents.

Từ khóa


Tài liệu tham khảo

1999, J. Virol., 73, 10029, 10.1128/JVI.73.12.10029-10039.1999

1995, J. Virol., 69, 695, 10.1128/jvi.69.2.695-700.1995

1999, J. Virol., 73, 5605, 10.1128/JVI.73.7.5605-5612.1999

2001, J. Virol., 75, 4002, 10.1128/JVI.75.8.4002-4007.2001

1999, J. Virol., 73, 6937, 10.1128/JVI.73.8.6937-6945.1999

2004, EMBO J., 23, 728, 10.1038/sj.emboj.7600064

2002, J. Virol., 76, 12712, 10.1128/JVI.76.24.12712-12722.2002

2002, Nature., 416, 672, 10.1038/416672a

2002, J. Virol., 76, 1194, 10.1128/JVI.76.3.1194-1205.2002

2003, Cell., 114, 573, 10.1016/S0092-8674(03)00683-4

2004, J. Virol., 787, 3514

2004, Nature., 427, 320, 10.1038/nature02239

2002, Trends Microbiol., 10, 100, 10.1016/S0966-842X(01)02288-0

1988, Science., 239, 476, 10.1126/science.3277268

2001, Curr. Opin. Microbiol., 4, 450, 10.1016/S1369-5274(00)00234-4

2000, Hepatology., 32, 1069, 10.1053/jhep.2000.18713

2005, Virol J., 2, 49, 10.1186/1743-422X-2-49

2004, J. Virol., 78, 378, 10.1128/JVI.78.1.378-388.2004

2004, Protein Expr. Purif., 33, 80, 10.1016/j.pep.2003.09.009

2004, Nature., 427, 307, 10.1038/427307a

1996, J. Cell Biol., 134, 863, 10.1083/jcb.134.4.863

1994, J. Virol., 68, 6940, 10.1128/jvi.68.11.6940-6946.1994

2002, Cell., 108, 717, 10.1016/S0092-8674(02)00660-8

2001, Cell., 105, 137, 10.1016/S0092-8674(01)00303-8

2004, Nat. Med., 10, S98, 10.1038/nm1144

1982, J. Mol. Biol., 156, 609, 10.1016/0022-2836(82)90269-8

2003, Proc. Natl. Acad. Sci. USA., 100, 6986, 10.1073/pnas.0832193100

2004, Nature., 427, 313, 10.1038/nature02165

2005, J. Virol., 79, 1223, 10.1128/JVI.79.2.1223-1231.2005

2003, Proc. Natl. Acad. Sci. USA., 100, 10598, 10.1073/pnas.1932511100

1995, Nature., 375, 291, 10.1038/375291a0

1987, J. Virol., 61, 3809, 10.1128/jvi.61.12.3809-3819.1987

1974, Anal. Biochem., 59, 277, 10.1016/0003-2697(74)90034-7

2000, Annu. Rev. Biochem., 69, 531, 10.1146/annurev.biochem.69.1.531

2004, J. Virol., 78, 3178, 10.1128/JVI.78.6.3178-3183.2004

1998, J. Cell Biol., 140, 91, 10.1083/jcb.140.1.91

2004, J. Biol. Chem., 279, 38755, 10.1074/jbc.M402385200

1992, J. Cell Biol., 116, 339, 10.1083/jcb.116.2.339

2004, Nat. Rev. Microbiol., 2, 789, 10.1038/nrmicro1006

1993, AIDS Res. Hum. Retroviruses., 9, 1051, 10.1089/aid.1993.9.1051

2003, J. Biol. Chem., 278, 46007, 10.1074/jbc.M307776200

2005, J. Cell Biol., 169, 167, 10.1083/jcb.200412059

2002, J. Virol., 76, 11645, 10.1128/JVI.76.22.11645-11658.2002

2002, Protein Expr. Purif., 25, 105, 10.1006/prep.2002.1616

2004, Structure (Camb)., 12, 1607, 10.1016/j.str.2004.06.019