Theoretical prediction of high electron mobility in multilayer MoS2 heterostructured with MoSe2

Journal of Chemical Physics - Tập 148 Số 1 - 2018
Li‐Ping Ji1,2,3,4,5, Juan Shi1,2,3,4,5, Z. Y. Zhang2,3,6,4,5, Jun Wang1,2,3,4,5, Jiachi Zhang1,2,3,4,5, Chun‐Lan Tao7,8,3,6,9, Haining Cao7,8,1,10,9
13Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
24School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
35Center for Computational Science, Korea Institute of Science and Technology, Seoul 136791, South Korea
4Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University 1 , Lanzhou 730000, China
5National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University 2 , Lanzhou 730000, China
6Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University 3 , Lanzhou 730000, China
71Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China
82National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou 730000, China
9School of Physical Science and Technology, Lanzhou University 4 , Lanzhou 730000, China
10Center for Computational Science, Korea Institute of Science and Technology 5 , Seoul 136791, South Korea

Tóm tắt

Two-dimensional (2D) MoS2 has been considered to be one of the most promising semiconducting materials with the potential to be used in novel nanoelectronic devices. High carrier mobility in the semiconductor is necessary to guarantee a low power dissipation and a high switch speed of the corresponding electronic device. Strain engineering in 2D materials acts as an important approach to tailor and design their electronic and carrier transport properties. In this work, strain is introduced to MoS2 through perpendicularly building van der Waals heterostructures MoSe2–MoS2. Our first-principles calculations demonstrate that acoustic-phonon-limited electron mobility can be significantly enhanced in the heterostructures compared with that in pure multilayer MoS2. It is found that the effective electron mass and the deformation potential constant are relatively smaller in the heterostructures, which is responsible for the enhancement in the electron mobility. Overall, the electron mobility in the heterostructures is about 1.5 times or more of that in pure multilayer MoS2 with the same number of layers for the studied structures. These results indicate that MoSe2 is an excellent material to be heterostructured with multilayer MoS2 to improve the charge transport property.

Từ khóa


Tài liệu tham khảo

2010, Phys. Rev. Lett., 105, 136805, 10.1103/physrevlett.105.136805

2012, Phys. Rev. B, 85, 205302, 10.1103/physrevb.85.205302

2012, Phys. Rev. Lett., 108, 196802, 10.1103/physrevlett.108.196802

2012, Nat. Nanotechnol., 7, 494, 10.1038/nnano.2012.96

2012, Nat. Nanotechnol., 7, 490, 10.1038/nnano.2012.95

2014, Science, 344, 1489, 10.1126/science.1250140

2013, Phys. Rev. B, 87, 241408(R), 10.1103/physrevb.87.241408

2014, Phys. Rev. Lett., 113, 097001, 10.1103/physrevlett.113.097001

2016, Nat. Nanotechnol., 11, 339, 10.1038/nnano.2015.314

2016, Nat. Phys., 12, 144, 10.1038/nphys3580

2011, ACS Nano, 5, 9703, 10.1021/nn203879f

2012, Adv. Mater., 24, 772, 10.1002/adma.201103965

2013, Phys. Chem. Chem. Phys., 15, 19427, 10.1039/c3cp52879k

2010, Nano Lett., 10, 1271, 10.1021/nl903868w

2011, Nat. Nanotechnol., 6, 147, 10.1038/nnano.2010.279

1967, Phys. Rev. B, 163, 743, 10.1103/physrev.163.743

2012, Phys. Rev. B, 85, 115317, 10.1103/physrevb.85.115317

2005, Proc. Natl. Acad. Sci. U. S. A., 102, 10451, 10.1073/pnas.0502848102

2013, Nanoscale, 5, 9572, 10.1039/c3nr03220e

2013, ACS Nano, 9, 7931, 10.1021/nn402954e

2013, Nat. Mater., 12, 815, 10.1038/nmat3687

2012, Nat. Commun., 3, 1011, 10.1038/ncomms2018

2012, IEEE Electron Device Lett., 33, 546, 10.1109/led.2012.2184520

2013, Nanoscale, 5, 548, 10.1039/c2nr33443g

2013, Appl. Phys. Lett., 102, 042104, 10.1063/1.4789365

2012, Phys. Rev. Lett., 108, 156802, 10.1103/physrevlett.108.156802

2013, Nano Lett., 13, 100, 10.1021/nl303583v

2013, Phys. Rev. B, 87, 155304, 10.1103/physrevb.87.155304

2013, J. Appl. Phys., 113, 163708, 10.1063/1.4803032

2012, Phys. Lett. A, 376, 1166, 10.1016/j.physleta.2012.02.029

2014, Nano Lett., 14, 4607, 10.1021/nl501658d

2015, Phys. Rev. B, 91, 085423, 10.1103/physrevb.91.085423

2015, Phys. Rev. B, 91, 161406(R), 10.1103/physrevb.91.161404

1996, Comput. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0

1996, Phys. Rev. B, 54, 11169, 10.1103/physrevb.54.11169

1996, Phys. Rev. Lett., 77, 3865, 10.1103/physrevlett.77.3865

1994, Phys. Rev. B, 50, 17953, 10.1103/physrevb.50.17953

2006, J. Comput. Chem., 27, 1787, 10.1002/jcc.20495

2012, Phys. Rev. B, 86, 075454, 10.1103/physrevb.86.075454

2013, Appl. Phys. Lett., 102, 012111, 10.1063/1.4774090

2013, Phys. Rev. B, 88, 195420, 10.1103/physrevb.88.195420

2002, Phys. Rev. B, 65, 092105, 10.1103/physrevb.65.092105

2013, Nano Lett., 13, 5485, 10.1021/nl4030648

2010, J. Phys. Chem. A, 114, 11814, 10.1021/jp106469x

2015, Nano Lett., 15, 8170, 10.1021/acs.nanolett.5b03615

2014, ACS Nano, 8, 4074, 10.1021/nn405938z

2013, Phys. Rev. B, 87, 235434, 10.1103/physrevb.87.235434

2016, Phys. Rev. B, 93, 035414, 10.1103/physrevb.93.035414

1994, IEEE Trans. Electron Devices, 41, 2363, 10.1109/16.337450

1950, Phys. Rev., 80, 72, 10.1103/physrev.80.72

2014, Nat. Commun., 5, 4475, 10.1038/ncomms5475

2015, Appl. Phys. Express, 8, 055201, 10.7567/apex.8.055201

2014, J. Phys. Chem. Lett., 5, 4073, 10.1021/jz502006z

2009, J. Am. Chem. Soc., 131, 17728, 10.1021/ja907528a

2015, Angew. Chem., Int. Ed., 127, 7572, 10.1002/anie.201502107

2015, Nanoscale, 7, 16020, 10.1039/c5nr04717j

2015, J. Phys. Chem. Lett., 6, 4252, 10.1021/acs.jpclett.5b01848

2011, Appl. Phys. Lett., 99, 222108, 10.1063/1.3665183

2014, Nano Res., 7, 1731, 10.1007/s12274-014-0532-x

2014, New J. Phys., 16, 105009, 10.1088/1367-2630/16/10/105009

2013, Phys. Rev. B, 87, 115418, 10.1103/physrevb.87.115418

2014, Nanoscale, 6, 4566, 10.1039/c4nr00783b

2014, Nanoscale, 6, 2879, 10.1039/c3nr06072a

2013, Sci. Rep., 3, 1549, 10.1038/srep01549

2017, Phys. Chem. Chem. Phys., 19, 21282, 10.1039/c7cp02973j

2015, J. Phys. D: Appl. Phys., 48, 375104, 10.1088/0022-3727/48/37/375104