Synthetic lethality: a framework for the development of wiser cancer therapeutics

Springer Science and Business Media LLC - Tập 1 - Trang 1-6 - 2009
William G Kaelin1
1Howard Hughes Medical Institute, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, USA

Tóm tắt

The challenge in medical oncology has always been to identify compounds that will kill, or at least tame, cancer cells while leaving normal cells unscathed. Most chemotherapeutic agents in use today were selected primarily for their ability to kill rapidly dividing cancer cells grown in cell culture and in mice, with their selectivity determined empirically during subsequent animal and human testing. Unfortunately, most of the drugs developed in this way have relatively low therapeutic indices (low toxic dose relative to the therapeutic dose). Recent advances in genomics are leading to a more complete picture of the range of mutations, both driver and passenger, present in human cancers. Synthetic lethality provides a conceptual framework for using this information to arrive at drugs that will preferentially kill cancer cells relative to normal cells. It also provides a possible way to tackle 'undruggable' targets. Two genes are synthetically lethal if mutation of either gene alone is compatible with viability but simultaneous mutation of both genes leads to death. If one is a cancer-relevant gene, the task is to discover its synthetic lethal interactors, because targeting these would theoretically kill cancer cells mutant in the cancer-relevant gene while sparing cells with a normal copy of that gene. All cancer drugs in use today, including conventional cytotoxic agents and newer 'targeted' agents, target molecules that are present in both normal cells and cancer cells. Their therapeutic indices almost certainly relate to synthetic lethal interactions, even if those interactions are often poorly understood. Recent technical advances enable unbiased screens for synthetic lethal interactors to be undertaken in human cancer cells. These approaches will hopefully facilitate the discovery of safer, more efficacious anticancer drugs that exploit vulnerabilities that are unique to cancer cells by virtue of the mutations they have accrued during tumor progression.

Tài liệu tham khảo

Kaelin WG: The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer. 2005, 5: 689-698. Kaelin WG: Choosing anticancer drug targets in the postgenomic era. J Clin Invest. 1999, 104: 1503-1506. Dobzhansky T: Genetics of natural populations. XIII. Recombination and variability in populations of Drosophila pseudoobscura. Genetics. 1946, 31: 269-290. Lucchesi JC: Synthetic lethality and semi-lethality among functionally related mutants of Drosophila melanogaster. Genetics. 1968, 59: 37-44. Hartwell L, Szankasi P, Roberts C, Murray A, Friend S: Integrating genetic approaches into the discovery of anti-cancer drugs. Science. 1997, 278: 1064-1068. Sharom JR, Bellows DS, Tyers M: From large networks to small molecules. Curr Opin Chem Biol. 2004, 8: 81-90. Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Pagé N, Robinson M, Raghibizadeh S, Hogue CW, Bussey H, Andrews B, Tyers M, Boone C: Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science. 2001, 294: 2364-2368. Tong AH, Lesage G, Bader GD, Ding H, Xu H, Xin X, Young J, Berriz GF, Brost RL, Chang M, Chen Y, Cheng X, Chua G, Friesen H, Goldberg DS, Haynes J, Humphries C, He G, Hussein S, Ke L, Krogan N, Li Z, Levinson JN, Lu H, Ménard P, Munyana C, Parsons AB, Ryan O, Tonikian R, Roberts T: Global mapping of the yeast genetic interaction network. Science. 2004, 303: 808-813. Reddy A, Kaelin WG: Using cancer genetics to guide the selection of anticancer drug targets. Curr Opin Pharmacol. 2002, 2: 366-373. Ginsberg D: E2F1 pathways to apoptosis. FEBS Lett. 2002, 529: 122-125. Krek W, G Xu, Livingston DM: Cyclin A-kinase regulation of E2F1 DNA binding function underlies suppression of an S phase checkpoint. Cell. 1995, 83: 1149-1158. Krek W, Ewen M, Shirodkar S, Arany Z, Kaelin WG, Livingston DM: Negative regulation of the growth-promoting transcription factor E2F-1 by a stably bound cyclin a-dependent protein kinase. Cell. 1994, 78: 161-172. Xu M, Sheppard KA, Peng C-Y, Yee AS, Piwnica-Worms H: Cyclin A/cdk2 binds directly to E2F1 and inhibits the DNA-binding activity of E2F1/DP1 by phosphorylation. Mol Cell Biol. 1994, 14: 8420-8431. Adams PD, Sellers WR, Sharma SK, Wu AD, Nalin CM, Kaelin WG: Identification of a cyclin-cdk2 recognition motif present in substrates and p21-like cdk inhibitors. Mol Cell Biol. 1996, 16: 6623-6633. Loog M, Morgan DO: Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Nature. 2005, 434: 104-108. Chen Y, Sharma S, Ramsey T, Jiang L, Martin M, Baker K, Adams P, Bair K, Kaelin WJ: Selective killing of transformed cells by cyclin/cyclin-dependent kinase 2 antagonists. Proc Natl Acad Sci USA. 1999, 96: 4325-4329. Mendoza N, Fong S, Marsters J, Koeppen H, Schwall R, Wickramasinghe D: Selective cyclin-dependent kinase 2/cyclin A antagonists that differ from ATP site inhibitors block tumor growth. Cancer Res. 2003, 63: 1020-1024. Nip J, Strom D, Fee B, Zambetti G, Cleveland J, Hiebert S: E2F-1 cooperates with topoisomerase II inhibition and DNA damage to selectively augment p53-independent apoptosis. Mol Cell Biol. 1997, 17: 1049-1056. Banerjee D, Schnieders B, Fu J, Ashikari D, Zhao S-C, Bertino J: Role of E2F-1 in chemosensitivity. Cancer Res. 1998, 58: 4292-4296. Xiao H, Goodrich DW: The retinoblastoma tumor suppressor protein is required for efficient processing and repair of trapped topoisomerase II-DNA-cleavable complexes. Oncogene. 2005, 24: 8105-8113. Wang Y, Engels IH, Knee DA, Nasoff M, Deveraux QL, Quon KC: Synthetic lethal targeting of MYC by activation of the DR5 death receptor pathway. Cancer Cell. 2004, 5: 501-512. Goga A, Yang D, Tward A, Morgan D, Bishop J: Inhibition of CDK1 as a potential therapy for tumors over-expressing MYC. Nat Med. 2007, 13: 820-827. Molenaar JJ, Ebus ME, Geerts D, Koster J, Lamers F, Valentijn LJ, Westerhout EM, Versteeg R, Caron HN: Inactivation of CDK2 is synthetically lethal to MYCN over-expressing cancer cells. Proc Natl Acad Sci USA. 2009, 106: 12968-12973. Powell S, DeFrank J, Connell P, Eogan M, Preffer F, Dombkowski D, Tang W, Friend S: Differential sensitivity of p53(-) and p53(+) cells to caffeine-induced radiosensitization and override of G2 delay. Cancer Res. 1995, 55: 1643-1648. Jiang H, Reinhardt HC, Bartkova J, Tommiska J, Blomqvist C, Nevanlinna H, Bartek J, Yaffe MB, Hemann MT: The combined status of ATM and p53 link tumor development with therapeutic response. Genes Dev. 2009, 23: 1895-1909. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T: Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005, 434: 913-917. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM, Jackson SP, Smith GC, Ashworth A: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005, 434: 917-921. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, Mortimer P, Swaisland H, Lau A, O'Connor MJ, Ashworth A, Carmichael J, Kaye SB, Schellens JH, de Bono JS: Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009, 361: 123-134. Shen WH, Balajee AS, Wang J, Wu H, Eng C, Pandolfi PP, Yin Y: Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell. 2007, 128: 157-170. McCabe N, Turner NC, Lord CJ, Kluzek K, Bialkowska A, Swift S, Giavara S, O'Connor MJ, Tutt AN, Zdzienicka MZ, Smith GC, Ashworth A: Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res. 2006, 66: 8109-8115. Turner N, Tutt A, Ashworth A: Hallmarks of 'BRCAness' in sporadic cancers. Nat Rev Cancer. 2004, 4: 814-819. Dolma S, Lessnick SL, Hahn WC, Stockwell BR: Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 2003, 3: 285-296. Yang WS, Stockwell BR: Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 2008, 15: 234-245. Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ, Wolpaw AJ, Smukste I, Peltier JM, Boniface JJ, Smith R, Lessnick SL, Sahasrabudhe S, Stockwell BR: RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 2007, 447: 864-868. Kaelin WG: The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer. 2008, 8: 865-873. Turcotte S, Chan DA, Sutphin PD, Hay MP, Denny WA, Giaccia AJ: A molecule targeting VHL-deficient renal cell carcinoma that induces autophagy. Cancer Cell. 2008, 14: 90-102. Thomas GV, Tran C, Mellinghoff IK, Welsbie DS, Chan E, Fueger B, Czernin J, Sawyers CL: Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat Med. 2006, 12: 122-127. Gupta P, Onder T, Jiang G, Tao K, Kuperwasser C, Weinberg R, Lander E: Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009, 138: 645-659. Bartz SR, Zhang Z, Burchard J, Imakura M, Martin M, Palmieri A, Needham R, Guo J, Gordon M, Chung N, Warrener P, Jackson AL, Carleton M, Oatley M, Locco L, Santini F, Smith T, Kunapuli P, Ferrer M, Strulovici B, Friend SH, Linsley PS: Small interfering RNA screens reveal enhanced cisplatin cytotoxicity in tumor cells having both BRCA network and TP53 disruptions. Mol Cell Biol. 2006, 26: 9377-9386. Kennedy RD, Chen CC, Stuckert P, Archila EM, De la Vega MA, Moreau LA, Shimamura A, D'Andrea AD: Fanconi anemia pathway-deficient tumor cells are hypersensitive to inhibition of ataxia telangiectasia mutated. J Clin Invest. 2007, 117: 1440-1449. Bommi-Reddy A, Almeciga I, Sawyer J, Geisen C, Li W, Harlow E, Kaelin WG, Grueneberg DA: Kinase requirements in human cells: III. Altered kinase requirements in VHL-/- cancer cells detected in a pilot synthetic lethal screen. Proc Natl Acad Sci USA. 2008, 105: 16484-16489. Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM: Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell. 2003, 3: 347-361. Hara S, Nakashiro KI, Klosek SK, Ishikawa T, Shintani S, Hamakawa H: Hypoxia enhances c-Met/HGF receptor expression and signaling by activating HIF-1alpha in human salivary gland cancer cells. Oral Oncol. 2006, 42: 593-598. Hayashi M, Sakata M, Takeda T, Tahara M, Yamamoto T, Okamoto Y, Minekawa R, Isobe A, Ohmichi M, Tasaka K, Murata Y: Up-regulation of c-met protooncogene product expression through hypoxia-inducible factor-1alpha is involved in trophoblast invasion under low-oxygen tension. Endocrinology. 2005, 146: 4682-4689. Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G, Piqani B, Eisenhaure TM, Luo B, Grenier JK, Carpenter AE, Foo SY, Stewart SA, Stockwell BR, Hacohen N, Hahn WC, Lander ES, Sabatini DM, Root DE: A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell. 2006, 124: 1283-1298. Luo B, Cheung HW, Subramanian A, Sharifnia T, Okamoto M, Yang X, Hinkle G, Boehm JS, Beroukhim R, Weir BA, Mermel C, Barbie DA, Awad T, Zhou X, Nguyen T, Piqani B, Li C, Golub TR, Meyerson M, Hacohen N, Hahn WC, Lander ES, Sabatini DM, Root DE: Highly parallel identification of essential genes in cancer cells. Proc Natl Acad Sci USA. 2008, 105: 20380-20385. Schlabach MR, Luo J, Solimini NL, Hu G, Xu Q, Li MZ, Zhao Z, Smogorzewska A, Sowa ME, Ang XL, Westbrook TF, Liang AC, Chang K, Hackett JA, Harper JW, Hannon GJ, Elledge SJ: Cancer proliferation gene discovery through functional genomics. Science. 2008, 319: 620-624. Silva JM, Marran K, Parker JS, Silva J, Golding M, Schlabach MR, Elledge SJ, Hannon GJ, Chang K: Profiling essential genes in human mammary cells by multiplex RNAi screening. Science. 2008, 319: 617-620. Paddison PJ, Silva JM, Conklin DS, Schlabach M, Li M, Aruleba S, Balija V, O'Shaughnessy A, Gnoj L, Scobie K, Chang K, Westbrook T, Cleary M, Sachidanandam R, McCombie WR, Elledge SJ, Hannon GJ: A resource for large-scale RNA-interference-based screens in mammals. Nature. 2004, 428: 427-431. Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, Heimerikx M, Kerkhoven RM, Madiredjo M, Nijkamp W, Weigelt B, Agami R, Ge W, Cavet G, Linsley PS, Beijersbergen RL, Bernards R: A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature. 2004, 428: 431-437. Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF, Wong KK, Elledge SJ: A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell. 2009, 137: 835-848. Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown J, Sedivy J, Kinzler K, Vogelstein B: Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science. 1998, 282: 1497-1501. Scholl C, Fröhling S, Dunn IF, Schinzel AC, Barbie DA, Kim SY, Silver SJ, Tamayo P, Wadlow RC, Ramaswamy S, Döhner K, Bullinger L, Sandy P, Boehm JS, Root DE, Jacks T, Hahn WC, Gilliland DG: Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell. 2009, 137: 821-834. Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, Schinze AC, Sandy P, Meylan E, Scholl C, Frohling S, Chan EM, Sos ML, Michel K, Mermel C, Silver JS, Weir BA, Reiling JH, Q S, Gupta PB, Wadlow RC, Le H, Hoersch S, Wittner BS, Ramaswamy S, Livingston DM, Sabatini DM, Meyerson M, Thomas RK, Lander ES: Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 2009