Molecular profiles of Quadriceps muscle in myostatin-null mice reveal PI3K and apoptotic pathways as myostatin targets

Springer Science and Business Media LLC - Tập 10 - Trang 1-13 - 2009
Ilham Chelh1, Bruno Meunier1, Brigitte Picard1, Mark James Reecy2, Catherine Chevalier3, Jean-François Hocquette1, Isabelle Cassar-Malek1
1INRA, UR1213, Unité de Recherches sur les Herbivores, Equipe Croissance et Métabolisme du Muscle, aint-Genès-Champanelle, France
2Animal Science Dept, Iowa State University, Ames, USA
3Plateforme Puces à ADN, Ouest Génopole, U915, Institut du Thorax, Faculté de Médecine 1, Nantes cédex, France

Tóm tắt

Myostatin (MSTN), a member of the TGF-β superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in the MSTN gene are responsible for the development of a hypermuscular phenotype. In this study, we performed transcriptomic and proteomic analyses to detect altered expression/abundance of genes and proteins. These differentially expressed genes and proteins may represent new molecular targets of MSTN and could be involved in the regulation of skeletal muscle mass. Transcriptomic analysis of the Quadriceps muscles of 5-week-old MSTN-null mice (n = 4) and their controls (n = 4) was carried out using microarray (human and murine oligonucleotide sequences) of 6,473 genes expressed in muscle. Proteomic profiles were analysed using two-dimensional gel electrophoresis coupled with mass spectrometry. Comparison of the transcriptomic profiles revealed 192 up- and 245 down- regulated genes. Genes involved in the PI3K pathway, insulin/IGF pathway, carbohydrate metabolism and apoptosis regulation were up-regulated. Genes belonging to canonical Wnt, calcium signalling pathways and cytokine-receptor cytokine interaction were down-regulated. Comparison of the protein profiles revealed 20 up- and 18 down-regulated proteins spots. Knockout of the MSTN gene was associated with up-regulation of proteins involved in glycolytic shift of the muscles and down-regulation of proteins involved in oxidative energy metabolism. In addition, an increased abundance of survival/anti-apoptotic factors were observed. All together, these results showed a differential expression of genes and proteins related to the muscle energy metabolism and cell survival/anti-apoptotic pathway (e.g. DJ-1, PINK1, 14-3-3ε protein, TCTP/GSK-3β). They revealed the PI3K and apoptotic pathways as MSTN targets and are in favour of a role of MSTN as a modulator of cell survival in vivo.

Tài liệu tham khảo

Guttridge : Signaling pathways weigh in on decisions to make or break skeletal muscle. Curr Opin Clin Nutr Metab Care. 2004, 7 (4): 443-450. 10.1097/01.mco.0000134364.61406.26. Tsuchida K: Activins, Myostatin and Related TGF-beta Family Members as Novel Therapeutic Targets for Endocrine, Metabolic and Immune Disorders. Curr Drug Targets Immune Endocr Metabol Disord. 2004, 4: 157-166. 10.2174/1568008043339901. Sillence MN: Technologies for the control of fat and lean deposition in livestock. Vet J. 2004, 167 (3): 242-257. 10.1016/j.tvjl.2003.10.020. Holmes JH, Ashmore CR: A histochemical study of development of muscle fiber type and size in normal and "double muscled" cattle. Growth. 1972, 36: 351-372. Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massabanda J, et al: A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet. 1997, 17: 71-74. 10.1038/ng0997-71. Mosher DS, Quignon P, Bustamante CD, Sutter NB, Mellersh CS, Parker HG, Ostrander EA: A Mutation in the Myostatin Gene Increases Muscle Mass and Enhances Racing Performance in Heterozygote Dogs. PLoS Genetics. 2007, 3 (5): 79-10.1371/journal.pgen.0030079. McPherron AC, Lawler AM, Lee S-J: Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997, 387 (6628): 83-90. 10.1038/387083a0. Schuelke M, Wagner KR, Stolz LE, Hubner C, Riebel T, Komen W, Braun T, Tobin JF, Lee S-J: Myostatin Mutation Associated with Gross Muscle Hypertrophy in a Child. N Engl J Med. 2004, 350 (26): 2682-2688. 10.1056/NEJMoa040933. Grobet L, Pirottin D, Farnir F, Poncelet D, Royo LJ, Brouwers B, Christians E, Desmecht D, Coignoul F, Kahn R, et al: Modulating skeletal muscle mass by postnatal, muscle-specific inactivation of the myostatin gene. Genesis. 2003, 35 (4): 227-238. 10.1002/gene.10188. Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J, Kambadur R: Myostatin, a Negative Regulator of Muscle Growth, Functions by Inhibiting Myoblast Proliferation. J Biol Chem. 2000, 275 (51): 40235-40243. 10.1074/jbc.M004356200. Taylor WE, Bhasin S, Artaza J, Byhower F, Azam M, Willard DH, Kull FC, Gonzalez-Cadavid N: Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells. Am J Physiol Endocrinol Metab. 2001, 280 (2): E221-228. Rios R, Carneiro I, Arce VM, Devesa J: Myostatin is an inhibitor of myogenic differentiation. Am J Physiol Cell Physiol. 2002, 282 (5): C993-999. Joulia-Ekaza D, Cabello G: Myostatin regulation of muscle development: Molecular basis, natural mutations, physiological aspects. Exp Cell Res. 2006, 312: 2401-2414. 10.1016/j.yexcr.2006.04.012. Joulia D, Bernardi H, Garandel V, Rabenoelina F, Vernus B, Cabello G: Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin. Experimental Cell Research. 2003, 286 (2): 263-275. 10.1016/S0014-4827(03)00074-0. McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R: Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol. 2003, 162 (6): 1135-1147. 10.1083/jcb.200207056. McFarland : The role of myostatin in chicken (Gallus domesticus) myogenic satellite cell proliferation and differentiation. Gen Comp Endocrinol. 2007, 151: 351-357. 10.1016/j.ygcen.2007.02.006. Steelman CA, Recknor JC, Nettleton D, Reecy JM: Transcriptional profiling of myostatin-knockout mice implicates Wnt signaling in postnatal skeletal muscle growth and hypertrophy. Faseb J. 2006, 20 (1): 580-582. Carlson CJ, Booth FW, Gordon SE: Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading. Am J Physiol. 1999, 277 (2 pt 2): R601-606. Solomon AM, Bouloux PMG: Modifying muscle mass – the endocrine perspective. J Endocrinol. 2006, 191 (2): 349-360. 10.1677/joe.1.06837. Reisz-Porszasz S, Bhasin S, Artaza JN, Shen R, Sinha-Hikim I, Hogue A, Fielder TJ, Gonzalez-Cadavid NF: Lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin. Am J Physiol Endocrinol Metab. 2003, 285 (4): E876-888. Durieux A-C, Amirouche A, Banzet S, Koulmann N, Bonnefoy R, Pasdeloup M, Mouret C, Bigard X, Peinnequin A, Freyssenet D: Ectopic expression of myostatin induces atrophy of adult skeletal muscle by decreasing muscle gene expression. Endocrinology. 2007, 148 (7): 3140-3147. 10.1210/en.2006-1500. Ohsawa Y, Hagiwara H, Nakatani M, Yasue A, Moriyama K, Murakami T, Tsuchida K, Noji S, Sunada Y: Muscular atrophy of caveolin-3-deficient mice is rescued by myostatin inhibition. J Clin Invest. 2006, 116 (11): 2924-2934. 10.1172/JCI28520. Gilson H, Schakman O, Combaret L, Lause P, Grobet L, Attaix D, Ketelslegers JM, Thissen JP: Myostatin Gene Deletion Prevents Glucocorticoid-Induced Muscle Atrophy. Endocrinology. 2007, 148 (1): 452-460. 10.1210/en.2006-0539. McFarlane C, Plummer E, Thomas M, Hennebry A, Ashby M, Ling N, Smith H, Sharma M, Kambadur R: Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism. J Cell Physiol. 2006, 209: 501-514. 10.1002/jcp.20757. McMahon CD, Popovic L, Oldham JM, Jeanplong F, Smith HK, Kambadur R, Sharma M, Maxwell L, Bass JJ: Myostatin-deficient mice lose more skeletal muscle mass than wild-type controls during hindlimb suspension. Am J Physiol Endocrinol Metab. 2003, 285 (1): E82-87. Hocquette J-F, Bas P, Bauchart D, Vermorel M, Geay Y: Fat partitioning and biochemical characteristics of fatty tissues in relation to plasma metabolites and hormones in normal and double-muscled young growing bulls. Comp Biochem Physiol A Molec Integr Physiol. 1999, 122 (1): 127-138. 10.1016/S1095-6433(98)10172-1. Bouley J, Meunier B, Chambon C, De Smet S, Hocquette JF, Picard B: Proteomic analysis of bovine skeletal muscle hypertrophy. Proteomics. 2005, 5 (2): 490-500. 10.1002/pmic.200400925. Cassar-Malek I, Passelaigue F, Bernard C, Leger J, Hocquette J-F: Target genes of myostatin loss-of-function in muscles of late bovine fetuses. BMC Genomics. 2007, 8 (1): 63-10.1186/1471-2164-8-63. Steelman CA, Recknor JC, Nettleton D, Reecy JM: Transcriptional profiling of myostatin-knockout mice implicates Wnt signaling in postnatal skeletal muscle growth and hypertrophy. FASEB J. 2006, 20 (3): 580-582. Vandebrouck A, Sabourin J, Rivet J, Balghi H, Sebille S, Kitzis A, Raymond G, Cognard C, Bourmeyster N, Constantin B: Regulation of capacitative calcium entries by {alpha}1-syntrophin: association of TRPC1 with dystrophin complex and the PDZ domain of {alpha}1-syntrophin. FASEB J. 2007, 21 (2): 608-617. 10.1096/fj.06-6683com. Chan TO, Rittenhouse SE, Tsichlis PN: Akt/PKB and other D3 phosphoinositide-regulated kinases: Kinase Activation by Phosphoinositide-Dependent Phosphorylation. Annu Rev Biochem. 1999, 68 (1): 965-1014. 10.1146/annurev.biochem.68.1.965. Lev N, Roncevich D, Ickowicz D, Melamed E, Offen D: Role of DJ-1 in Parkinson's disease. J Mol Neurosci. 2006, 29 (3): 215-225. 10.1385/JMN:29:3:215. Kim RH, Peters M, Jang Y, Shi W, Pintilie M, Fletcher GC, DeLuca C, Liepa J, Zhou L, Snow B, et al: DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell. 2005, 7 (3): 263-273. 10.1016/j.ccr.2005.02.010. Tang B, Xiong H, Sun P, Zhang Y, Wang D, Hu Z, Zhu Z, Ma H, Pan Q, Xia J-h, et al: Association of PINK1 and DJ-1 confers digenic inheritance of early-onset Parkinson's disease. Hum Mol Genet. 2006, 15 (11): 1816-1825. 10.1093/hmg/ddl104. Cully M, You H, Levine AJ, Mak TW: Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer. 2006, 6 (3): 184-192. 10.1038/nrc1819. Frost RA, Lang CH: Protein kinase B/Akt: a nexus of growth factor and cytokine signaling in determining muscle mass. J Appl Physiol. 2007, 103 (1): 378-387. 10.1152/japplphysiol.00089.2007. Leger B, Cartoni R, Praz M, Lamon S, Deriaz O, Crettenand A, Gobelet C, Rohmer P, Konzelmann M, Luthi F, et al: Akt signalling through GSK-3{beta}, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol. 2006, 576 (3): 923-933. 10.1113/jphysiol.2006.116715. Amirouche A, Durieux A-C, Banzet S, Koulmann N, Bonnefoy R, Mouret C, Bigard X, Peinnequin A, Freyssenet D: Down-Regulation of Akt/Mammalian Target of Rapamycin Signaling Pathway in Response to Myostatin Overexpression in Skeletal Muscle. Endocrinology. 2009, 150 (1): 286-294. 10.1210/en.2008-0959. Yang W, Zhang Y, Li Y, Wu Z, Zhu D: Myostatin Induces Cyclin D1 Degradation to Cause Cell Cycle Arrest through a Phosphatidylinositol 3-Kinase/AKT/GSK-3beta Pathway and Is Antagonized by Insulin-like Growth Factor 1. J Biol Chem. 2007, 282 (6): 3799-3808. 10.1074/jbc.M610185200. Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ: The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell. 2004, 14: 395-403. 10.1016/S1097-2765(04)00211-4. Velden van der JLJ, Langen RCJ, Kelders MCJM, Wouters EFM, Janssen-Heininger YMW, Schols AMWJ: Inhibition of glycogen synthase kinase-3{beta} activity is sufficient to stimulate myogenic differentiation. Am J Physiol Cell Physiol. 2006, 290 (2): C453-462. 10.1152/ajpcell.00068.2005. Fan G-C, Chu G, Mitton B, Song Q, Yuan Q, Kranias EG: Small Heat-Shock Protein Hsp20 Phosphorylation Inhibits {beta}-Agonist-Induced Cardiac Apoptosis. Circ Res. 2004, 94 (11): 1474-1482. 10.1161/01.RES.0000129179.66631.00. Kaul SC, Deocaris CC, Wadhwa R: Three faces of mortalin: A housekeeper, guardian and killer. Exp Geront. 2007, 42 (4): 263-274. 10.1016/j.exger.2006.10.020. Wadhwa KTaSCK: An Hsp70 family chaperone, mortalin/mthsp70/PBP74/Grp75: what, when, and where?. Cell Stress Chaperones. 2002, 7 (3): 309-316. 10.1379/1466-1268(2002)007<0309:AHFCMM>2.0.CO;2. Wadhwa R, Takano S, Kaur K, Deocaris CC, Pereira-Smith OM, Reddel RR, Kaul SC: Upregulation of mortalin/mthsp70/Grp75 contributes to human carcinogenesis. Int J Cancer. 2006, 118 (12): 2973-2980. 10.1002/ijc.21773. Sugimoto A, Hozak RR, Nakashima T, Nishimoto T, Rothman JH: dad-1, an endogenous programmed cell death suppressor in Caenorhabditis elegans and vertebrates. EMBO J. 1995, 14 (18): 4434-4441. Nakashima T, Sekiguchi T, Kuraoka A, Fukushima K, Shibata Y, Komiyama S, Nishimoto T: Molecular cloning of a human cDNA encoding a novel protein, DAD1, whose defect causes apoptotic cell death in hamster BHK21 cells. Mol Cell Biol. 1993, 13 (10): 6367-6374. Gurbuxani S, Xu Y, Keerthivasan G, Wickrema A, Crispino JD: Differential requirements for survivin in hematopoietic cell development. Proc Natl Acad Sci USA. 2005, 102 (32): 11480-11485. 10.1073/pnas.0500303102. Yarm FR: Plk Phosphorylation Regulates the Microtubule-Stabilizing Protein TCTP. Mol Cell Biol. 2002, 22 (17): 6209-6221. 10.1128/MCB.22.17.6209-6221.2002. Bommer U-A, Thiele B-J: The translationally controlled tumour protein (TCTP). Int J Biochem Cell Biol. 2004, 36 (3): 379-385. 10.1016/S1357-2725(03)00213-9. Porter GW, Khuri FR, Fu H: Dynamic 14-3-3/client protein interactions integrate survival and apoptotic pathways. Sem Cancer Biol. 2006, 16 (3): 193-202. 10.1016/j.semcancer.2006.03.003. Datta SR, Katsov A, Hu L, Petros A, Fesik SW, Yaffe MB, Greenberg ME: 14-3-3 Proteins and Survival Kinases Cooperate to Inactivate BAD by BH3 Domain Phosphorylation. Mol Cell. 2000, 6 (1): 41-51. 10.1016/S1097-2765(00)00006-X. Haar EV, Lee S-i, Bandhakavi S, Griffin TJ, Kim D-H: Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol. 2007, 9 (3): 316-323. 10.1038/ncb1547. Pozuelo Rubio M, Geraghty KM, Wong BHC, Wood NT, Campbell DG, Morrice N, Mackintosh C: 14-3-3-affinity purification of over 200 human phosphoproteins reveals new links to regulation of cellular metabolism, proliferation and trafficking. Biochem J. 2004, 379 (2): 395-408. 10.1042/BJ20031797. Ríos R, Carneiro I, Arce VM, Devesa J: Myostatin Regulates Cell Survival during C2C12 Myogenesis. Biochem Biophys Res Commun. 2001, 280 (2): 561-566. 10.1006/bbrc.2000.4159. Yang W, Zhang Y, Ma G, Zhao X, Chen Y, Zhu D: Identification of gene expression modifications in myostatin-stimulated myoblasts. Biochem Biophys Res Commun. 2005, 326 (3): 660-666. 10.1016/j.bbrc.2004.11.096. Adhihetty PJ, Hood DA: Mechanisms of Apoptosis in Skeletal Muscle. Basic Appl Myol. 2003, 13 (4): 171-179. Koçtürk S, Kayatekin B, Resmi H, Açýkgöz O, Kaynak C, Özer E: The apoptotic response to strenuous exercise of the gastrocnemius and soleus muscle fibers in rats. Eur J Appl Physiol. 2008, 102 (5): 515-524. 10.1007/s00421-007-0612-7. Spencer MJ, Walsh C, Dorshkind KA, Rodriguez EM, Tidball JG: Myonuclear apoptosis in dystrophic mdx muscle occurs by perforin-mediated cytotoxicity. J Clin Invest. 1997, 99 (11): 2745-2751. 10.1172/JCI119464. Dupont-Versteegden EE: Apoptosis in muscle atrophy: Relevance to sarcopenia. Exp Geront. 2005, 40 (6): 473-481. 10.1016/j.exger.2005.04.003. Busquets S, Deans C, Figueras M, Moore-Carrasco R, López-Soriano FJ, Fearon KCH, Argilés JM: Apoptosis is present in skeletal muscle of cachectic gastro-intestinal cancer patients. Clin Nutr. 2007, 26 (5): 614-618. 10.1016/j.clnu.2007.06.005. Allen DL, Roy RR, Edgerton VR: Myonuclear domains in muscle adaptation and disease. Muscle Nerve. 1999, 22 (10): 1350-1360. 10.1002/(SICI)1097-4598(199910)22:10<1350::AID-MUS3>3.0.CO;2-8. Primeau A, Adhihetty PJ, Hood DA: Apoptosis in heart and skeletal muscle. Can J Appl Physiol. 2002, 27 (4): 349-395. Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci. 2001, 98: 5116-5120. 10.1073/pnas.091062498. Mera R, Thompson H, Prasad C: How to calculate sample size for an experiment: A case-based description. Nutr Neurosci. 1998, 1: 87-91. Lenth RV: Statistical power calculations. J Anim Sci. 2007, 85 (13_suppl): E24-29. 10.2527/jas.2006-449. Bouley J, Chambon C, Picard B: Mapping of bovine skeletal muscle proteins using two-dimensional gel electrophoresis and mass spectrometry. Proteomics. 2004, 4 (6): 1811-1824. 10.1002/pmic.200300688. Meunier B, Bouley J, Piec I, Bernard C, Picard B, Hocquette J-F: Data analysis methods for detection of differential protein expression in two-dimensional gel electrophoresis. Anal Biochem. 2005, 340 (2): 226-230. 10.1016/j.ab.2005.02.028. Picard B, Duris M-P, Jurie C: Caractérisation des chaînes lourdes de myosine dans le muscle de bovin. INRA Prod Anim. 1998, 11 (2): 150-152.