Quantum Uncertainty and the Spectra of Symmetric Operators

Acta Applicandae Mathematicae - Tập 106 - Trang 349-358 - 2008
R. T. W. Martin, A. Kempf1
1Department of Applied Mathematics, University of Waterloo, Waterloo, Canada

Tóm tắt

In certain circumstances, the uncertainty, ΔS[φ], of a quantum observable, S, can be bounded from below by a finite overall constant ΔS>0, i.e., ΔS[φ]≥ΔS, for all physical states φ. For example, a finite lower bound to the resolution of distances has been used to model a natural ultraviolet cutoff at the Planck or string scale. In general, the minimum uncertainty of an observable can depend on the expectation value, t=〈φ,S φ〉, through a function ΔS t of t, i.e., ΔS[φ]≥ΔS t , for all physical states φ with 〈φ,S φ〉=t. An observable whose uncertainty is finitely bounded from below is necessarily described by an operator that is merely symmetric rather than self-adjoint on the physical domain. Nevertheless, on larger domains, the operator possesses a family of self-adjoint extensions. Here, we prove results on the relationship between the spacing of the eigenvalues of these self-adjoint extensions and the function ΔS t . We also discuss potential applications in quantum and classical information theory.

Tài liệu tham khảo

Gross, D.J., Mende, P.F.: String theory beyond the Planck scale. Nucl. Phys. B 303, 407 (1988) Amati, D., Ciafaloni, M., Veneziano, G.: Can space-time be probed beyond the string size? Phys. Lett. B 216, 41 (1989) Garay, L.J.: Quantum gravity and minimum length. Int. J. Mod. Phys. A 10, 145 (1995) Witten, E.: Reflections on the fate of space-time. Phys. Today 49(4), 24 (1996) Amelino-Camelia, G., Ellis, J., Mavromatos, N.E., Nanopoulos, N.: Planckian scattering and black holes. Mod. Phys. Lett. A 12, 2029 (1997). gr-qc/9806028 Kempf, A.: Quantum group-symmetric fock spaces with Bargmann-Fock representation. Lett. Math. Phys. 26, 1 (1992) Kempf, A.: Uncertainty relation in quantum mechanics with quantum group symmetry. J. Math. Phys. 35, 4483 (1994). hep-th/9311147 Kempf, A.: Quantum field theory with nonzero minimal uncertainties in positions and momenta. J. Math. Phys. 38, 1347 (1997). hep-th/9405067 Kempf, A., Mangano, G., Mann, R.B.: Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 52, 1108 (1995) Kempf, A., Mangano, G.: Minimal length uncertainty relation and ultraviolet regularization. Phys. Rev. D 55, 7909 (1997) Brau, F.: Minimal length uncertainty relation and the hydrogen atom. J. Phys. A 32, 7691 (1999) Brout, R., Gabriel, Cl., Lubo, M., Spindel, P.: Minimal length uncertainty principle and the trans-Planckian problem of black hole physics. Phys. Rev. D 59, 044005 (1999) Ahluwalia, D.V.: Wave-particle duality at the Planck scale: freezing of neutrino oscillations. Phys. Lett. A 275, 31 (2000). gr-qc/0002005 Kempf, A.: Mode generating mechanism in inflation with a cutoff. Phys. Rev. D 63, 083514 (2001) Akhiezer, N.I., Glazman, I.M.: Theory of Linear Operators in Hilbert Space. Dover, Mineola (1993) Kempf, A.: Fields over unsharp coordinates. Phys. Rev. Lett. 85, 2873 (2000). hep-th/9905114 Kempf, A.: On fields with finite information density. Phys. Rev. D 69, 124014 (2004). hep-th/0404103 Rosenblum, M., Rovnyak, J.: Hardy Classes and Operator Theory. Courier Dover, Mineola (1997) Naimark, M.A.: Linear Differential Operators in Hilbert Space, Part II. Frederick Ungar, New York (1968) Kempf, A.: Covariant information-density cutoff in curved space-time. Phys. Rev. Lett. 92, 221301 (2004). gr-qc/0310035 Kempf, A., Martin, R.: On information theory, spectral geometry and quantum gravity. Phys. Rev. Lett. 100, 021304 (2008) Kempf, A.: On the only three short distance structures which can be described by linear operators. Rep. Math. Phys. 43, 171–177 (1999). hep-th/9806013 Shannon, C.E.: Communication in the presence of noise. Proc. IRE 37, 10 (1949) Benedetto, J.J., Ferreira, P.J.S.G.: Modern Sampling Theory. Birkhäuser, Basel (2001)