Quantum Uncertainty and the Spectra of Symmetric Operators
Tóm tắt
In certain circumstances, the uncertainty, ΔS[φ], of a quantum observable, S, can be bounded from below by a finite overall constant ΔS>0, i.e., ΔS[φ]≥ΔS, for all physical states φ. For example, a finite lower bound to the resolution of distances has been used to model a natural ultraviolet cutoff at the Planck or string scale. In general, the minimum uncertainty of an observable can depend on the expectation value, t=〈φ,S
φ〉, through a function ΔS
t
of t, i.e., ΔS[φ]≥ΔS
t
, for all physical states φ with 〈φ,S
φ〉=t. An observable whose uncertainty is finitely bounded from below is necessarily described by an operator that is merely symmetric rather than self-adjoint on the physical domain. Nevertheless, on larger domains, the operator possesses a family of self-adjoint extensions. Here, we prove results on the relationship between the spacing of the eigenvalues of these self-adjoint extensions and the function ΔS
t
. We also discuss potential applications in quantum and classical information theory.
Tài liệu tham khảo
Gross, D.J., Mende, P.F.: String theory beyond the Planck scale. Nucl. Phys. B 303, 407 (1988)
Amati, D., Ciafaloni, M., Veneziano, G.: Can space-time be probed beyond the string size? Phys. Lett. B 216, 41 (1989)
Garay, L.J.: Quantum gravity and minimum length. Int. J. Mod. Phys. A 10, 145 (1995)
Witten, E.: Reflections on the fate of space-time. Phys. Today 49(4), 24 (1996)
Amelino-Camelia, G., Ellis, J., Mavromatos, N.E., Nanopoulos, N.: Planckian scattering and black holes. Mod. Phys. Lett. A 12, 2029 (1997). gr-qc/9806028
Kempf, A.: Quantum group-symmetric fock spaces with Bargmann-Fock representation. Lett. Math. Phys. 26, 1 (1992)
Kempf, A.: Uncertainty relation in quantum mechanics with quantum group symmetry. J. Math. Phys. 35, 4483 (1994). hep-th/9311147
Kempf, A.: Quantum field theory with nonzero minimal uncertainties in positions and momenta. J. Math. Phys. 38, 1347 (1997). hep-th/9405067
Kempf, A., Mangano, G., Mann, R.B.: Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 52, 1108 (1995)
Kempf, A., Mangano, G.: Minimal length uncertainty relation and ultraviolet regularization. Phys. Rev. D 55, 7909 (1997)
Brau, F.: Minimal length uncertainty relation and the hydrogen atom. J. Phys. A 32, 7691 (1999)
Brout, R., Gabriel, Cl., Lubo, M., Spindel, P.: Minimal length uncertainty principle and the trans-Planckian problem of black hole physics. Phys. Rev. D 59, 044005 (1999)
Ahluwalia, D.V.: Wave-particle duality at the Planck scale: freezing of neutrino oscillations. Phys. Lett. A 275, 31 (2000). gr-qc/0002005
Kempf, A.: Mode generating mechanism in inflation with a cutoff. Phys. Rev. D 63, 083514 (2001)
Akhiezer, N.I., Glazman, I.M.: Theory of Linear Operators in Hilbert Space. Dover, Mineola (1993)
Kempf, A.: Fields over unsharp coordinates. Phys. Rev. Lett. 85, 2873 (2000). hep-th/9905114
Kempf, A.: On fields with finite information density. Phys. Rev. D 69, 124014 (2004). hep-th/0404103
Rosenblum, M., Rovnyak, J.: Hardy Classes and Operator Theory. Courier Dover, Mineola (1997)
Naimark, M.A.: Linear Differential Operators in Hilbert Space, Part II. Frederick Ungar, New York (1968)
Kempf, A.: Covariant information-density cutoff in curved space-time. Phys. Rev. Lett. 92, 221301 (2004). gr-qc/0310035
Kempf, A., Martin, R.: On information theory, spectral geometry and quantum gravity. Phys. Rev. Lett. 100, 021304 (2008)
Kempf, A.: On the only three short distance structures which can be described by linear operators. Rep. Math. Phys. 43, 171–177 (1999). hep-th/9806013
Shannon, C.E.: Communication in the presence of noise. Proc. IRE 37, 10 (1949)
Benedetto, J.J., Ferreira, P.J.S.G.: Modern Sampling Theory. Birkhäuser, Basel (2001)