The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance

Journal of bioenergetics - Tập 40 - Trang 533-539 - 2008
Chris E. Cooper1, Guy C. Brown2
1Department of Biological Sciences, University of Essex, Colchester, UK
2Department of Biochemistry, University of Cambridge, Cambridge, UK

Tóm tắt

The four gases, nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S) and hydrogen cyanide (HCN) all readily inhibit oxygen consumption by mitochondrial cytochrome oxidase. This inhibition is responsible for much of their toxicity when they are applied externally to the body. However, recently these gases have all been implicated, to greater or lesser extents, in normal cellular signalling events. In this review we analyse the chemistry of this inhibition, comparing and contrasting mechanism and discussing physiological consequences. The inhibition by NO and CO is dependent on oxygen concentration, but that of HCN and H2S is not. NO and H2S are readily metabolised by oxidative processes within cytochrome oxidase. In these cases the enzyme may act as a physiological detoxifier of these gases. CO oxidation is much slower and unlikely to be as physiologically important. The evidence for normal physiological levels of these gases interacting with cytochrome oxidase is equivocal, in part because there is little robust data about their steady state concentrations. A reasonable case can be made for NO, and perhaps CO and H2S, inhibiting cytochrome oxidase in vivo, but endogenous levels of HCN seem unlikely to be high enough.

Tài liệu tham khảo

Alderton WK, Cooper CE, Knowles RG (2001) Biochem J 357:593–615 Antonini E, Brunori M, Greenwood C, Malmstrom BG, Rotilio GC (1971) Eur J Biochem 23:396–400 Antunes F, Boveris A, Cadenas E (2004) Proc Natl Acad Sci USA 101:16774–16779 Babcock GT, Wikström M (1992) Nature 356:301–309 Bellamy TC, Griffiths C, Garthwaite J (2002) J Biol Chem 277:31801–38107 Berka V, Vygodina T, Musatov A, Nicholls P, Konstantinov AA (1993) FEBS Lett 315:237–241 Bhatia M (2005) IUBMB Life 57:603–606 Blackstone E, Roth MB (2007) Shock 27:370–372 Blackstone E, Morrison M, Roth MB (2005) Science 308:518 Borowitz JL, Gunasekar PG, Isom GE (1997) Brain Res 768:294–300 Brown GC (2007) Front Biosci 12:1024–1033 Brown GC, Cooper CE (1994) FEBS Lett 356:295–298 Brown GC, Borutaite V (2007) Cardiovasc Res 75:283–290 Chance B (1965) J Gen Physiol 49(Suppl):163–195 Chance B, Erecinska M, Wagner M (1970) Ann N Y Acad Sci 174:193–204 Cheng Y, Ndisang JF, Tang G, Cao K, Wang R (2004) Am J Physiol Heart Circ Physiol 287:H2316–H2323 Cipollone R, Visca P (2007) IUBMB Life 59:187–189 Clementi E, Brown GC, Foxwell N, Moncada S (1999) Proc Natl Acad Sci USA 96:1559–1562 Coburn RF (ed) (1970) Biological effects of carbon monoxide Ann N Y Acad Sci 174, New York Cooper CE (2002) Trends Biochem Sci 27:33–39 Cooper CE, Giulivi C (2007) Am J Physiol Cell Physiol 292:C1993–2003 Cooper CE, Markus M, Seetulsingh SP, Wrigglesworth JM (1993) Biochem J 290:139–144 Cooper CE, Torres J, Sharpe MA, Wilson MT (1997) FEBS Lett 414:281–284 Cooper CE, Mason MG, Nicholls P (2008) Biochim Biophys Acta 1777:867–876 D’Amico G, Lam F, Hagen T, Moncada S (2006) J Cell Sci 119:2291–2298 Doeller JE, Isbell TS, Benavides G, Koenitzer J, Patel H, Patel RP, Lancaster JR Jr, Darley-Usmar VM, Kraus DW (2005) Anal Biochem 341:40–51 Durante W, Johnson FK, Johnson RA (2006) J Cell Mol Med 10:672–686 Foresti R, Bani-Hani MG, Motterlini R (2008) Intensive Care Med 34:649–658 Giuffre A, Barone MC, Mastronicola D, D’Itri E, Sarti P, Brunori M (2000) Biochemistry 39:15446–15453 Giuffre A, Barone MC, Brunori M, D’Itri E, Ludwig B, Malatesta F, Muller HW, Sarti P (2002) J Biol Chem 277:22402–22406 Goubern M, Andriamihaja M, Nubel T, Blachier F, Bouillaud F (2007) Faseb J 21:1699–1706 Griffiths MJ, Evans TW (2005) N Engl J Med 353:2683–2695 Gunasekar PG, Borowitz JL, Turek JJ, Van Horn DA, Isom GE (2000) J Neurosci Res 61:570–575 Gunasekar PG, Prabhakaran K, Li L, Zhang L, Isom GE, Borowitz JL (2004) Neurosci Res 49:13–18 Hill BC, Woon T-C, Nicholls P, Peterson J, Greenwood C, Thomson AJ (1984) Biochem J 224:591–600 Ishii A, Seno H, Watanabe-Suzuki K, Suzuki O, Kumazawa T (1998) Anal Chem 70:4873–4876 Kaczorowski DJ, Zuckerbraun BS (2007) Curr Med Chem 14:2720–2725 Kagan VE, Tyurin VA, Jiang J, Tyurina YY, Ritov VB, Amoscato AA, Osipov AN, Belikova NA, Kapralov AA, Kini V, Vlasova II, Zhao Q, Zou M, Di P, Svistunenko DA, Kurnikov IV, Borisenko GG (2005) Nat Chem Biol 1:223–232 Kashiba M, Kajimura M, Goda N, Suematsu M (2002) Keio J Med 51:1–10 Kimura H (2002) Mol Neurobiol 26:13–19 Kinsella JP (2006) Curr Opin Pediatr 18:107–111 Koehler RC, Traystman RJ (2002) Antioxid Redox Signal 4:279–290 Lancaster J Jr (ed) (1996) Nitric oxide: principles and actions. Academic, San Diego Leavesley HB, Li L, Prabhakaran K, Borowitz JL, Isom GE (2008) Toxicol Sci 101:101–111 Leschelle X, Goubern M, Andriamihaja M, Blottiere HM, Couplan E, Gonzalez-Barroso MD, Petit C, Pagniez A, Chaumontet C, Mignotte B, Bouillaud F, Blachier F (2005) Biochim Biophys Acta 1725:201–212 Li L, Moore PK (2007) Biochem Soc Trans 35:1138–1141 Lowicka E, Beltowski J (2007) Pharmacol Rep 59:4–24 Lundquist P, Sorbo B (1989) Clin Chem 35:617–619 Mason MG, Nicholls P, Wilson MT, Cooper CE (2006) Proc Natl Acad Sci USA 103:708–713 Medical and biological effects of environmental pollutants: subcommittee on hydrogen sulfide (ed) (1979) Hydrogen sulfide. University Park Press, Baltimore Mitchell R, Brown S, Mitchell P, Rich PR (1992) Biochim Biophys Acta 1100:40–48 Moody AJ (1996) Biochim Biophys Acta 1276:6–20 Nicholls P (1975) Biochim Biophys Acta 396:24–35 Nicholls P (1976) Biochim Biophys Acta 430:13–29 Nicholls P (1979) Biochem J 183:519–529 Nicholls P, Mochan E (1967) Biochim Biophys Acta 131:397–400 Nicholls P, Chance B (1974) In: Hayaishi O (ed) Molecular mechanisms of oxygen activation. Academic Press, New York, pp 479–534 Nicholls P, Kim JK (1981) Biochim Biophys Acta 637:312–320 Nicholls P, Kim JK (1982) Can J Biochem 60:613–623 Nicholls P, van Buuren KJ, van Gelder BF (1972) Biochim Biophys Acta 275:279–287 Pearce LL, Bominaar EL, Hill BC, Peterson J (2003) J Biol Chem 278:52139–52145 Petersen LC (1977) Biochim Biophys Acta 460:299–307 Rich PR, Meunier B, Mitchell R, Moody AJ (1996) Biochim Biophys Acta 1275:91–95 Sharpe MA, Cooper CE (1998) Biochem J 332:9–19 Stannard JN, Horecker BL (1948) J Biol Chem 172:599–608 Stelmaszynska T (1986) Int J Biochem 18:1107–1114 Szabo C (2007) Nat Rev Drug Discov 6:917–935 Tang G, Wu L, Liang W, Wang R (2005) Mol Pharmacol 68:1757–1764 Timkovich R, Thrasher JS (1988) Biochemistry 27:5383–5388 Torres J, Sharpe MA, Rosquist A, Cooper CE, Wilson MT (2000) FEBS Lett 475:263–266 Ubuka T (2002) J Chromatogr B Analyt Technol Biomed Life Sci 781:227–249 Vennesland B, Conn EE, Knowles CJ, Westley J, Wissing F (eds) (1981) Cyanide in biology. Academic Press, London Villani G, Greco M, Papa S, Attardi G (1998) J Biol Chem 273:31829–31836 Vlasova II, Tyurin VA, Kapralov AA, Kurnikov IV, Osipov AN, Potapovich MV, Stoyanovsky DA, Kagan VE (2006) J Biol Chem 281:14554–14562 Volpato GP, Searles R, Yu B, Scherrer-Crosbie M, Bloch KD, Ichinose F, Zapol WM (2008) Anesthesiology 108:659–668 Wang R (2002) Faseb J 16:1792–1798 Wang R (2003) Antioxid Redox Signal 5:493–501 Wever R, van GB, Dervartanian DV (1975) Biochim Biophys Acta 387:189–193 Whitfield NL, Kreimier EL, Verdial FC, Skovgaard N, Olson KR (2008) Am J Physiol Regul Integr Comp Physiol 294:R1930–R1937 Wilson MT, Antonini G, Malatesta F, Sarti P, Brunori M (1994) J Biol Chem 269:24114–24119 Yong R, Searcy DG (2001) Comp Biochem. Physiol B Biochem Mol Biol 129:1291–1237 Young LJ, Caughey WS (1986a) Biochem J 239:225–227 Young LJ, Caughey WS (1986b) Biochemistry 25:152–161 Zuckerbraun BS, Chin BY, Bilban M, de Costa d’Avila J, Rao J, Billiar TR, Otterbein LE (2007) Faseb J 21:1099–1106