The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance
Tóm tắt
The four gases, nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S) and hydrogen cyanide (HCN) all readily inhibit oxygen consumption by mitochondrial cytochrome oxidase. This inhibition is responsible for much of their toxicity when they are applied externally to the body. However, recently these gases have all been implicated, to greater or lesser extents, in normal cellular signalling events. In this review we analyse the chemistry of this inhibition, comparing and contrasting mechanism and discussing physiological consequences. The inhibition by NO and CO is dependent on oxygen concentration, but that of HCN and H2S is not. NO and H2S are readily metabolised by oxidative processes within cytochrome oxidase. In these cases the enzyme may act as a physiological detoxifier of these gases. CO oxidation is much slower and unlikely to be as physiologically important. The evidence for normal physiological levels of these gases interacting with cytochrome oxidase is equivocal, in part because there is little robust data about their steady state concentrations. A reasonable case can be made for NO, and perhaps CO and H2S, inhibiting cytochrome oxidase in vivo, but endogenous levels of HCN seem unlikely to be high enough.
Tài liệu tham khảo
Alderton WK, Cooper CE, Knowles RG (2001) Biochem J 357:593–615
Antonini E, Brunori M, Greenwood C, Malmstrom BG, Rotilio GC (1971) Eur J Biochem 23:396–400
Antunes F, Boveris A, Cadenas E (2004) Proc Natl Acad Sci USA 101:16774–16779
Babcock GT, Wikström M (1992) Nature 356:301–309
Bellamy TC, Griffiths C, Garthwaite J (2002) J Biol Chem 277:31801–38107
Berka V, Vygodina T, Musatov A, Nicholls P, Konstantinov AA (1993) FEBS Lett 315:237–241
Bhatia M (2005) IUBMB Life 57:603–606
Blackstone E, Roth MB (2007) Shock 27:370–372
Blackstone E, Morrison M, Roth MB (2005) Science 308:518
Borowitz JL, Gunasekar PG, Isom GE (1997) Brain Res 768:294–300
Brown GC (2007) Front Biosci 12:1024–1033
Brown GC, Cooper CE (1994) FEBS Lett 356:295–298
Brown GC, Borutaite V (2007) Cardiovasc Res 75:283–290
Chance B (1965) J Gen Physiol 49(Suppl):163–195
Chance B, Erecinska M, Wagner M (1970) Ann N Y Acad Sci 174:193–204
Cheng Y, Ndisang JF, Tang G, Cao K, Wang R (2004) Am J Physiol Heart Circ Physiol 287:H2316–H2323
Cipollone R, Visca P (2007) IUBMB Life 59:187–189
Clementi E, Brown GC, Foxwell N, Moncada S (1999) Proc Natl Acad Sci USA 96:1559–1562
Coburn RF (ed) (1970) Biological effects of carbon monoxide Ann N Y Acad Sci 174, New York
Cooper CE (2002) Trends Biochem Sci 27:33–39
Cooper CE, Giulivi C (2007) Am J Physiol Cell Physiol 292:C1993–2003
Cooper CE, Markus M, Seetulsingh SP, Wrigglesworth JM (1993) Biochem J 290:139–144
Cooper CE, Torres J, Sharpe MA, Wilson MT (1997) FEBS Lett 414:281–284
Cooper CE, Mason MG, Nicholls P (2008) Biochim Biophys Acta 1777:867–876
D’Amico G, Lam F, Hagen T, Moncada S (2006) J Cell Sci 119:2291–2298
Doeller JE, Isbell TS, Benavides G, Koenitzer J, Patel H, Patel RP, Lancaster JR Jr, Darley-Usmar VM, Kraus DW (2005) Anal Biochem 341:40–51
Durante W, Johnson FK, Johnson RA (2006) J Cell Mol Med 10:672–686
Foresti R, Bani-Hani MG, Motterlini R (2008) Intensive Care Med 34:649–658
Giuffre A, Barone MC, Mastronicola D, D’Itri E, Sarti P, Brunori M (2000) Biochemistry 39:15446–15453
Giuffre A, Barone MC, Brunori M, D’Itri E, Ludwig B, Malatesta F, Muller HW, Sarti P (2002) J Biol Chem 277:22402–22406
Goubern M, Andriamihaja M, Nubel T, Blachier F, Bouillaud F (2007) Faseb J 21:1699–1706
Griffiths MJ, Evans TW (2005) N Engl J Med 353:2683–2695
Gunasekar PG, Borowitz JL, Turek JJ, Van Horn DA, Isom GE (2000) J Neurosci Res 61:570–575
Gunasekar PG, Prabhakaran K, Li L, Zhang L, Isom GE, Borowitz JL (2004) Neurosci Res 49:13–18
Hill BC, Woon T-C, Nicholls P, Peterson J, Greenwood C, Thomson AJ (1984) Biochem J 224:591–600
Ishii A, Seno H, Watanabe-Suzuki K, Suzuki O, Kumazawa T (1998) Anal Chem 70:4873–4876
Kaczorowski DJ, Zuckerbraun BS (2007) Curr Med Chem 14:2720–2725
Kagan VE, Tyurin VA, Jiang J, Tyurina YY, Ritov VB, Amoscato AA, Osipov AN, Belikova NA, Kapralov AA, Kini V, Vlasova II, Zhao Q, Zou M, Di P, Svistunenko DA, Kurnikov IV, Borisenko GG (2005) Nat Chem Biol 1:223–232
Kashiba M, Kajimura M, Goda N, Suematsu M (2002) Keio J Med 51:1–10
Kimura H (2002) Mol Neurobiol 26:13–19
Kinsella JP (2006) Curr Opin Pediatr 18:107–111
Koehler RC, Traystman RJ (2002) Antioxid Redox Signal 4:279–290
Lancaster J Jr (ed) (1996) Nitric oxide: principles and actions. Academic, San Diego
Leavesley HB, Li L, Prabhakaran K, Borowitz JL, Isom GE (2008) Toxicol Sci 101:101–111
Leschelle X, Goubern M, Andriamihaja M, Blottiere HM, Couplan E, Gonzalez-Barroso MD, Petit C, Pagniez A, Chaumontet C, Mignotte B, Bouillaud F, Blachier F (2005) Biochim Biophys Acta 1725:201–212
Li L, Moore PK (2007) Biochem Soc Trans 35:1138–1141
Lowicka E, Beltowski J (2007) Pharmacol Rep 59:4–24
Lundquist P, Sorbo B (1989) Clin Chem 35:617–619
Mason MG, Nicholls P, Wilson MT, Cooper CE (2006) Proc Natl Acad Sci USA 103:708–713
Medical and biological effects of environmental pollutants: subcommittee on hydrogen sulfide (ed) (1979) Hydrogen sulfide. University Park Press, Baltimore
Mitchell R, Brown S, Mitchell P, Rich PR (1992) Biochim Biophys Acta 1100:40–48
Moody AJ (1996) Biochim Biophys Acta 1276:6–20
Nicholls P (1975) Biochim Biophys Acta 396:24–35
Nicholls P (1976) Biochim Biophys Acta 430:13–29
Nicholls P (1979) Biochem J 183:519–529
Nicholls P, Mochan E (1967) Biochim Biophys Acta 131:397–400
Nicholls P, Chance B (1974) In: Hayaishi O (ed) Molecular mechanisms of oxygen activation. Academic Press, New York, pp 479–534
Nicholls P, Kim JK (1981) Biochim Biophys Acta 637:312–320
Nicholls P, Kim JK (1982) Can J Biochem 60:613–623
Nicholls P, van Buuren KJ, van Gelder BF (1972) Biochim Biophys Acta 275:279–287
Pearce LL, Bominaar EL, Hill BC, Peterson J (2003) J Biol Chem 278:52139–52145
Petersen LC (1977) Biochim Biophys Acta 460:299–307
Rich PR, Meunier B, Mitchell R, Moody AJ (1996) Biochim Biophys Acta 1275:91–95
Sharpe MA, Cooper CE (1998) Biochem J 332:9–19
Stannard JN, Horecker BL (1948) J Biol Chem 172:599–608
Stelmaszynska T (1986) Int J Biochem 18:1107–1114
Szabo C (2007) Nat Rev Drug Discov 6:917–935
Tang G, Wu L, Liang W, Wang R (2005) Mol Pharmacol 68:1757–1764
Timkovich R, Thrasher JS (1988) Biochemistry 27:5383–5388
Torres J, Sharpe MA, Rosquist A, Cooper CE, Wilson MT (2000) FEBS Lett 475:263–266
Ubuka T (2002) J Chromatogr B Analyt Technol Biomed Life Sci 781:227–249
Vennesland B, Conn EE, Knowles CJ, Westley J, Wissing F (eds) (1981) Cyanide in biology. Academic Press, London
Villani G, Greco M, Papa S, Attardi G (1998) J Biol Chem 273:31829–31836
Vlasova II, Tyurin VA, Kapralov AA, Kurnikov IV, Osipov AN, Potapovich MV, Stoyanovsky DA, Kagan VE (2006) J Biol Chem 281:14554–14562
Volpato GP, Searles R, Yu B, Scherrer-Crosbie M, Bloch KD, Ichinose F, Zapol WM (2008) Anesthesiology 108:659–668
Wang R (2002) Faseb J 16:1792–1798
Wang R (2003) Antioxid Redox Signal 5:493–501
Wever R, van GB, Dervartanian DV (1975) Biochim Biophys Acta 387:189–193
Whitfield NL, Kreimier EL, Verdial FC, Skovgaard N, Olson KR (2008) Am J Physiol Regul Integr Comp Physiol 294:R1930–R1937
Wilson MT, Antonini G, Malatesta F, Sarti P, Brunori M (1994) J Biol Chem 269:24114–24119
Yong R, Searcy DG (2001) Comp Biochem. Physiol B Biochem Mol Biol 129:1291–1237
Young LJ, Caughey WS (1986a) Biochem J 239:225–227
Young LJ, Caughey WS (1986b) Biochemistry 25:152–161
Zuckerbraun BS, Chin BY, Bilban M, de Costa d’Avila J, Rao J, Billiar TR, Otterbein LE (2007) Faseb J 21:1099–1106