Characterizations of g-frames and g-Riesz bases in Hilbert spaces
Tóm tắt
Từ khóa
Tài liệu tham khảo
Duffin, R. J., Schaeffer, A. C.: A class of nonharmonic Fourier series. Trans. Amer. Math. Soc., 72, 341–366 (1952)
Christensen, O.: Frames, Riesz bases, and discrete Gabor/wavelet expansions. Bull. Amer. Math. Soc., 38(3), 273–291 (2001)
Yang, D. Y., Zhou, X. W., Yuan, Z. Z.: Frame wavelets with compact supports for L 2(R n). Acta Mathematica Sinica, English Series, 23(2), 349–356 (2007)
Li, Y. Z.: A class of bidimensional FMRA wavelet frames. Acta Mathematica Sinica, English Series, 22(4), 1051–1062 (2006)
Zhu, Y. C.: q-Besselian frames in Banach spaces. Acta Mathematica Sinica, English Series, 23(9), 1707–1718 (2007)
Li, C. Y., Cao, H. X.: X d frames and Reisz bases for a Banach space. Acta Mathematica Sinica, Chinese Series, 49(6), 1361–1366 (2006)
Casazza, P. G., Kutyniok, G.: Frames of subspaces, in: Wavelets. Frames and Operator Theory, Contemp. Math., Amer. Math. Soc., 345, 87–113 (2004)
Asgari, M. S., Khosravi A.: Frames and bases of subspaces in Hilbert spaces. J. Math. Anal. Appl., 308, 541–553 (2005)
Fornasier, M.: Quasi-orthogonal decompositions of structured frames. J. Math. Anal. Appl., 289, 180–199 (2004)
Ding, J.: New perturbation results on pseudo-inverses of linear operators in Banach spaces. Linear Algebra Appl., 362, 229–235 (2003)
Taylor, A. E., Lay, D. C.: Introdution to Functional Analysis, New York, Wiley, 1980
Holub, J. R.: Per-frame operators, Besselian frame, and near-Riesz bases in Hilbert spaces. Proc. Amer. Math. Soc., 122, 779–785 (1994)
Kim, H. O., Lim, J. K.: New characterizations of Riesz bases. Appl. Comput. Harmon. Anal., 4, 222–229 (1997)
Casazza, P. G., Christensen O.: Perturbation of operators and applications to frame theory. J. Fourier Anal. Appl., 3, 543–557 (1997)