Spatial Ion Peak Compression and its Utility in Ion Mobility Spectrometry
Tóm tắt
A novel concept for ion spatial peak compression is described, and discussed primarily in the context of ion mobility spectrometry (IMS). Using theoretical and numerical methods, the effects of using non-constant (e.g., linearly varying) electric fields on ion distributions (e.g., an ion mobility peak) is evaluated both in the physical and temporal domains. The application of a linearly decreasing electric field in conjunction with conventional drift field arrangements is shown to lead to a reduction in IMS physical peak width. When multiple ion packets (i.e., peaks) in a selected mobility window are simultaneously subjected to such fields, there is ion packet compression (i.e., a reduction in peak widths for all species). This peak compression occurs with only a modest reduction of resolution, which can be quickly recovered as ions drift in a constant field after the compression event. Compression also yields a significant increase in peak intensities. Ion mobility peak compression can be particularly useful for mitigating diffusion-driven peak broadening over very long path length separations (e.g., in cyclic multi-pass arrangements), and for achieving higher S/N and IMS resolution over a selected mobility range.
Tài liệu tham khảo
Hoaglund, C.S., Valentine, S.J., Sporleder, C.R., Reilly, J.P., Clemmer, D.E.: Three-dimensional ion mobility/TOFMS analysis of electrosprayed biomolecules. Anal. Chem. 70, 2236–2242 (1998)
Collins, D.C., Xiang, Y., Lee, M.L.: Comprehensive ultra-high pressure capillary liquid chromatography/ion mobility spectrometry. Chromatographia 55, 123–128 (2002)
Eckers, C., Laures, A.M.F., Giles, K., Major, H., Pringle, S.: Evaluating the utility of ion mobility separation in combination with high-pressure liquid chromatography/mass spectrometry to facilitate detection of trace impurities in formulated drug products. Rapid Commun. Mass Spectrom. 21, 1255–1263 (2007)
Bronsema, K.J., Bischoff, R., van de Merbel, N.C.: High-sensitivity LC-MS/MS quantification of peptides and proteins in complex biological samples: the impact of enzymatic digestion and internal standard selection on method performance. Anal. Chem. 85, 9528–9535 (2013)
Baker, E.S., Livesay, E.A., Orton, D.J., Moore, R.J., Danielson, W.F., 3rd, Prior, D.C., Ibrahim, Y.M., LaMarche, B.L., Mayampurath, A.M., Schepmoes, A.A., Hopkins, D.F., Tang, K., Smith, R.D., Belov, M.E.: An LC-IMS-MS platform providing increased dynamic range for high-throughput proteomic studies. J. Proteome Res. 9, 997–1006 (2010)
Bohrer, B.C., Mererbloom, S.I., Koeniger, S.L., Hilderbrand, A.E., Clemmer, D.E.: Biomolecule analysis by ion mobility spectrometry. Annu. Rev. Palo Alto 1, 293–327 (2008)
Kemper, P.R., Dupuis, N.F., Bowers, M.T.: A new, higher resolution, ion mobility mass spectrometer. Int. J. Mass Spectrom. 287, 46–57 (2009)
Merenbloom, S.I., Glaskin, R.S., Henson, Z.B., Clemmer, D.E.: High-resolution ion cyclotron mobility spectrometry. Anal. Chem. 81, 1482–1487 (2009)
Baker, E.S., Clowers, B.H., Li, F.M., Tang, K., Tolmachev, A.V., Prior, D.C., Belov, M.E., Smith, R.D.: Ion mobility spectrometry-mass spectrometry performance using electrodynamic ion funnels and elevated drift gas pressures. J. Am. Soc. Mass Spectrom. 18, 1176–1187 (2007)
Belov, M.E., Buschbach, M.A., Prior, D.C., Tang, K.Q., Smith, R.D.: Multiplexed ion mobility spectrometry-orthogonal time-of-flight mass spectrometry. Anal. Chem. 79, 2451–2462 (2007)
Davis, E.J., Dwivedi, P., Tam, M., Siems, W.F., Hill, H.H.: High-pressure ion mobility spectrometry. Anal. Chem. 81, 3270–3275 (2009)
Shvartsburg, A.A., Smith, R.D.: Accelerated high-resolution differential ion mobility separations using hydrogen. Anal. Chem. 83, 9159–9166 (2011)
Bhardwaj, C., Hanley, L.: Ion sources for mass spectrometric identification and imaging of molecular species. Nat. Prod. Rep. 31, 756–767 (2014)
Covey, T.R., Thomson, B.A., Schneider, B.B.: Atmospheric pressure ion sources. Mass Spectrom. Rev. 28, 870–897 (2009)
Du, Y.Z., Wang, W.G., Li, H.Y.: Resolution enhancement of ion mobility spectrometry by improving the three-zone properties of the Bradbury-Nielsen gate. Anal. Chem. 84, 1725–1731 (2012)
Mason, E.A., McDaniel, E.W.: Federal Republic of Germany. Wiley-VCH Verlag, Weinheim (1988)
Verbeck, G.F., Ruotolo, B.T., Gillig, K.J., Russell, D.H.: Resolution equations for high-field ion mobility. J. Am. Soc. Mass Spectrom. 15, 1320–1324 (2004)
Shvartsburg, A.A., Smith, R.D.: Protein analyses using differential ion mobility microchips with mass spectrometry. Anal. Chem. 84, 7297–7300 (2012)
Shvartsburg, A.A., Tang, K.Q., Smith, R.D.: FAIMS operation for realistic gas flow profile and asymmetric waveforms including electronic noise and ripple. J. Am. Soc. Mass Spectrom. 16, 1447–1455 (2005)
Scarff, C.A., Thalassinos, K., Hilton, G.R., Scrivens, J.H.: Traveling wave ion mobility mass spectrometry studies of protein structure: biological significance and comparison with X-ray crystallography and nuclear magnetic resonance spectroscopy measurements. Rapid Commun. Mass Spectrom. 22, 3297–3304 (2008)
Shvartsburg, A.A., Smith, R.D.: Fundamentals of traveling wave ion mobility spectrometry. Anal. Chem. 80, 9689–9699 (2008)
Valentine, S.J., Stokes, S.T., Kurulugama, R.T., Nachtigall, F.M., Clemmer, D.E.: Overtone mobility spectrometry: Part 2. Theoretical considerations of resolving power. J. Am. Soc. Mass Spectrom. 20, 738–750 (2009)
Kurulugama, R.T., Nachtigall, F.M., Lee, S., Valentine, S.J., Clemmer, D.E.: Overtone mobility spectrometry: Part 1. Experimental observations. J. Am. Soc. Mass Spectrom. 20, 729–737 (2009)
Glaskin, R.S., Valentine, S.J., Clemmer, D.E.: A scanning frequency mode for ion cyclotron mobility spectrometry. Anal. Chem. 82, 8266–8271 (2010)
Glaskin, R.S., Ewing, M.A., Clemmer, D.E.: Ion trapping for ion mobility spectrometry measurements in a cyclical drift tube. Anal. Chem. 85, 7003–7008 (2013)
Moskovets, E.V.: Line-shape of mass peaks in a reflectron with plane metal grids. Appl. Phys. B-Photo. 57, 397–403 (1993)
Zhang, X.Y., Garimella, S.V.B., Prost, S.A., Webb, I.K., Chen, T.C., Tang, K.Q., Tolmachev, A.V., Norheim, R.V., Baker, E.S., Anderson, G.A., Ibrahim, Y.M., Smith, R.D.: Ion trapping, storage, and ejection in structures for lossless ion manipulations. Anal. Chem. 87, 6010–6016 (2015)
Garimella, S.V.B., Ibrahim, Y.M., Webb, I.K., Ipsen, A.B., Chen, T.C., Tolmachev, A.V., Baker, E.S., Anderson, G.A., Smith, R.D.: Ion manipulations in structures for lossless ion manipulations (SLIM): computational evaluation of a 90° turn and a switch. Analyst 14, 6845–6852 (2015)
Webb, I.K., Garimella, S.V.B., Tolmachev, A.V., Chen, T.C., Zhang, X.Y., Norheim, R.V., Prost, S.A., LaMarche, B., Anderson, G.A., Ibrahim, Y.M., Smith, R.D.: Experimental evaluation and optimization of structures for loss less ion manipulations for ion mobility spectrometry with time-of-flight mass spectrometry. Anal. Chem. 86, 9169–9176 (2014)
Webb, I.K., Garimella, S.V.B., Tolmachev, A.V., Chen, T.C., Zhang, X.Y., Cox, J.T., Norheim, R.V., Prost, S.A., LaMarche, B., Anderson, G.A., Ibrahim, Y.M., Smith, R.D.: Mobility-resolved ion selection in uniform drift field ion mobility spectrometry/mass spectrometry: dynamic switching in structures for lossless ion manipulations. Anal. Chem. 86, 9632–9637 (2014)
Tolmachev, A.V., Webb, I.K., Ibrahim, Y.M., Garimella, S.V.B., Zhang, X.Y., Anderson, G.A., Smith, R.D.: Characterization of ion dynamics in structures for lossless ion manipulations. Anal. Chem. 86, 9162–9168 (2014)
Garimella, S.V.B., Ibrahim, Y.M., Webb, I.K., Tolmachev, A.V., Zhang, X.Y., Prost, S.A., Anderson, G.A., Smith, R.D.: Simulation of electric potentials and ion motion in planar electrode structures for lossless ion manipulations (SLIM). J. Am. Soc. Mass Spectrom. 25, 1890–1896 (2014)
Hamid, A.M., Ibrahim, Y.M., Garimella, S.V.B., Webb, I.K., Deng, L., Chen, T.-C., Anderson, G.A., Prost, S.A., Norheim, R.V., Tolmachev, A.V., Smith, R.D.: Characterization of traveling wave ion mobility separations in structures for lossless ion manipulations. Anal. Chem. 87, 11301–11308 (2015)
Laiko, V.V.: Orthogonal extraction ion mobility spectrometry. J. Am. Soc. Mass Spectrom. 17, 500–507 (2006)
Garimella, S., Xu, W., Huang, G.M., Harper, J.D., Cooks, R.G., Ouyang, Z.: Gas-flow assisted ion transfer for mass spectrometry. J. Mass Spectrom. 47, 201–207 (2012)
Tannehill, J.C., Anderson, D.A.: Pletcher. R.H. Taylor and Francis, Philadelphia (1997)
Ibrahim, Y., Tang, K., Tolmachev, A.V., Shvartsburg, A.A., Smith, R.D.: Improving mass spectrometer sensitivity using a high-pressure electrodynamic ion funnel interface. J. Am. Soc. Mass Spectrom. 17, 1299–1305 (2006)
Ibrahim, Y., Belov, M.E., Tolmachev, A.V., Prior, D.C., Smith, R.D.: Ion funnel trap interface for orthogonal time-of-flight mass spectrometry. Anal. Chem. 79, 7845–7852 (2007)
Ibrahim, Y.M., Prior, D.C., Baker, E.S., Smith, R.D., Belov, M.E.: Characterization of an ion mobility-multiplexed collision induced dissociation-tandem time-of-flight mass spectrometry approach. Int. J. Mass Spectrom. 293, 34–44 (2010)
Ibrahim, Y.M., Shvartsburg, A.A., Smith, R.D., Belov, M.E.: Ultrasensitive identification of localization variants of modified peptides using ion mobility spectrometry. Anal. Chem. 83, 5617–5623 (2011)
Ewing, M.A., Zucker, S.M., Valentine, S.J., Clemmer, D.E.: Overtone mobility spectrometry: Part 5. Simulations and analytical expressions describing overtone limits. J. Am. Soc. Mass Spectrom. 24, 615–621 (2013)
Ewing, M.A., Conant, C.R.P., Zucker, S.M., Griffith, K.J., Clemmer, D.E.: Selected overtone mobility spectrometry. Anal. Chem. 87, 5132–5138 (2015)
Prasad, S., Tang, K., Manura, D., Papanastasiou, D., Smith, R.D.: Simulation of ion motion in FAIMS through combined use of SIMION and modified SDS. Anal. Chem. 81, 8749–8757 (2009)
Shvartsburg, A.A., Smith, R.D.: Optimum waveforms for differential ion mobility spectrometry (FAIMS). J. Am. Soc. Mass Spectrom. 19, 1286–1295 (2008)
May, J.C., McLean, J.A.: Ion mobility-mass spectrometry: time-dispersive instrumentation. Anal. Chem. 87, 1422–1436 (2015)