Reciprocal interaction with G-actin and tropomyosin is essential for aquaporin-2 trafficking

Journal of Cell Biology - Tập 182 Số 3 - Trang 587-601 - 2008
Yumi Noda1,2, Saburo Horikawa3, Eiichiro Kanda1, M. Yamashita1, Hu Meng1, Kayoko Eto1, Yuhua Li1, Michio Kuwahara1, Keiji Hirai4, Chan‐Gi Pack5, Masataka Kinjo5, Shigeo Okabe6, Sei Sasaki1
11Department of Nephrology and
22COE Program for Brain Integration and its Disorders, Graduate School of Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
33Division of Pathophysiology and
44Department of Autonomic Physiology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8510 Japan
55Laboratory of Supramolecular Biophysics, Research Institute for Electronic Science, Hokkaido University, N12W6, Kita-Ku, Sapporo 060-0812, Japan
66Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

Tóm tắt

Trafficking of water channel aquaporin-2 (AQP2) to the apical membrane and its vasopressin and protein kinase A (PKA)–dependent regulation in renal collecting ducts is critical for body water homeostasis. We previously identified an AQP2 binding protein complex including actin and tropomyosin-5b (TM5b). We show that dynamic interactions between AQP2 and the actin cytoskeleton are critical for initiating AQP2 apical targeting. Specific binding of AQP2 to G-actin in reconstituted liposomes is negatively regulated by PKA phosphorylation. Dual color fluorescence cross-correlation spectroscopy reveals local AQP2 interaction with G-actin in live epithelial cells at single-molecule resolution. Cyclic adenosine monophosphate signaling and AQP2 phosphorylation release AQP2 from G-actin. In turn, AQP2 phosphorylation increases its affinity to TM5b, resulting in reduction of TM5b bound to F-actin, subsequently inducing F-actin destabilization. RNA interference–mediated knockdown and overexpression of TM5b confirm its inhibitory role in apical trafficking of AQP2. These findings indicate a novel mechanism of channel protein trafficking, in which the channel protein itself critically regulates local actin reorganization to initiate its movement.

Từ khóa


Tài liệu tham khảo

2000, Biochem. J., 352, 789, 10.1042/bj3520789

2003, Kidney Int., 64, 2, 10.1046/j.1523-1755.2003.00049.x

2006, Nat. Methods., 3, 83, 10.1038/nmeth822

2005, ChemPhysChem., 6, 984, 10.1002/cphc.200400639

1982, Cell Motil., 2, 1

2001, Curr. Biol., 11, 1300, 10.1016/S0960-9822(01)00395-5

1990, J. Biol. Chem., 265, 21323, 10.1016/S0021-9258(17)45363-4

1989, Biochemistry., 28, 8501, 10.1021/bi00447a035

2003, Am. J. Physiol. Renal Physiol., 284, F893, 10.1152/ajprenal.00387.2002

1994, J. Biol. Chem., 269, 5735, 10.1016/S0021-9258(17)37523-3

1998, Am. J. Physiol., 275, F285, 10.1152/ajpcell.1998.275.1.C285

2000, Am. J. Physiol. Renal Physiol., 278, F29, 10.1152/ajprenal.2000.278.1.F29

2004, Proc. Natl. Acad. Sci. USA., 101, 1578, 10.1073/pnas.0303274101

2003, Physiol. Rev., 83, 433, 10.1152/physrev.00026.2002

1983, Biochemistry., 22, 1187, 10.1021/bi00274a031

1993, Nature., 361, 549, 10.1038/361549a0

2004, Am. J. Physiol. Gastrointest. Liver Physiol., 287, G886, 10.1152/ajpgi.00065.2004

1989, J. Biol. Chem., 264, 7490, 10.1016/S0021-9258(18)83261-6

2000, J. Cell Biol., 151, 919, 10.1083/jcb.151.4.919

2006, Nat. Cell Biol., 8, 1163, 10.1038/ncb1478

2001, J. Biol. Chem., 276, 20451, 10.1074/jbc.M010270200

2006, Nat. Biotechnol., 24, 577, 10.1038/nbt1207

2004, J. Biol. Chem., 279, 5066, 10.1074/jbc.M311186200

2000, FEMS Microbiol. Lett., 188, 1, 10.1111/j.1574-6968.2000.tb09159.x

2003, J. Mol. Biol., 325, 949, 10.1016/S0022-2836(02)01333-5

2004, Am. J. Physiol. Renal Physiol., 286, F233, 10.1152/ajprenal.00179.2003

2007, J. Biol. Chem., 282, 28721, 10.1074/jbc.M611101200

2006, J. Biol. Chem., 281, 6528, 10.1074/jbc.M509386200

2006, Am. J. Physiol. Renal Physiol., 291, F1113, 10.1152/ajprenal.00195.2006

2007, J. Biol. Chem., 282, 16871, 10.1074/jbc.M700379200

2002, Physiol. Rev., 82, 205, 10.1152/physrev.00024.2001

2006, Biochim. Biophys. Acta., 1758, 1117, 10.1016/j.bbamem.2006.03.004

2004, Biochem. Biophys. Res. Commun., 322, 740, 10.1016/j.bbrc.2004.07.195

2004, FEBS Lett., 568, 139, 10.1016/j.febslet.2004.05.021

2005, Biochem. Biophys. Res. Commun., 330, 1041, 10.1016/j.bbrc.2005.03.079

2002, J. Cell Biol., 156, 1065, 10.1083/jcb.200110013

2006, Biophys. J., 91, 3921, 10.1529/biophysj.105.079467

2002, Biochim. Biophys. Acta., 1596, 121, 10.1016/S0167-4838(02)00210-8

2001, J. Muscle Res. Cell Motil., 22, 5, 10.1023/A:1010303732441

1981, Biochim. Biophys. Acta., 673, 26, 10.1016/0304-4165(81)90307-X

2006, Biochim. Biophys. Acta., 1758, 479, 10.1016/j.bbamem.2006.03.019

2004, Biochem. Biophys. Res. Commun., 324, 849, 10.1016/j.bbrc.2004.09.126

2005, Biochim. Biophys. Acta., 1687, 52, 10.1016/j.bbalip.2004.11.011

1993, Am. J. Physiol., 265, C757, 10.1152/ajpcell.1993.265.3.C757

2005, Histochem. Cell Biol., 124, 1, 10.1007/s00418-005-0010-3

2006, Cell., 127, 831, 10.1016/j.cell.2006.10.030

2003, J. Cell Sci., 116, 3285, 10.1242/jcs.00640

2005, J. Am. Soc. Nephrol., 16, 2881, 10.1681/ASN.2005020190

1996, Cell Motil. Cytoskeleton., 33, 223, 10.1002/(SICI)1097-0169(1996)33:3<223::AID-CM6>3.0.CO;2-B

1998, Cell Motil. Cytoskeleton., 40, 393, 10.1002/(SICI)1097-0169(1998)40:4<393::AID-CM7>3.0.CO;2-C

2000, J. Cell Sci., 113, 1985, 10.1242/jcs.113.11.1985

2005, Endocrinology., 146, 5063, 10.1210/en.2005-0868

2005, J. Biol. Chem., 280, 1070, 10.1074/jbc.M406797200

2001, J. Membr. Biol., 180, 73, 10.1007/s002320010060

2000, Am. J. Physiol. Renal Physiol., 278, F395, 10.1152/ajprenal.2000.278.3.F395