Benefits of live phytoplankton, Chlorella vulgaris, as a biocontrol agent against fish pathogen Vibrio anguillarum
Tóm tắt
Từ khóa
Tài liệu tham khảo
William FR (1996) Introduction to the practice of fishery science, revised edn. Academic, San Diego
Muller-Feuga A (2000) The role of microalgae in aquaculture: situation and trends. J Appl Phycol 12:527–534
Yamaguchi K (1997) Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites. J Appl Phycol 8:487–502
Borowitzka MA (1997) Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401
Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96
Maruyama I, Nakao T, Shigeno I, Ando Y, Hirayama K (1997) Application of unicellular algae Chlorella vulgaris for the mass-culture of marine rotifer Branchionus. Hydrobiologia 358:133–138
Suminto K, Hirayama K (1997) Application of a growth-promoting bacteria for stable mass culture of three marine microalgae. Hydrobiologia 358:223–230
Hirayama K, Maruyama I, Maeda T (1989) Nutritional effect of freshwater Chlorella on growth of the rotifer Brachionus plicatilis. Hydrobiologia 186(187):39–42
Brown MR, Jeffrey SW, Dunstan JK (1997) Nutritional properties of microalgae for mariculture. Aquaculture 151:315–331
Øie G, Makridis P, Reitan KI, Olsen Y (1997) Protein and carbon utilization of rotifers (Brachionus plicatilis) in first feeding of turbot larvae (Scophthalmus maximus L.). Aquaculture 153:103–122
Nakase G, Nakagawa Y, Miyashita S, Nasu T, Senoo S et al (2007) Association between bacterial community structures and mortality of fish larvae in intensive rearing systems. Fish Sci 73:784–791
Nakase G, Eguchi M (2007) Analysis of bacterial communities in Nannochloropsis sp. cultures used for larval fish production. Fish Sci 73:543–549
Conceição LEC, Yúfera M, Makridis P, Morais S, Dinis T (2010) Live feeds for early stages of fish rearing. Aquac Res 41:613–640
Salvesen I, Reitan KI, Skjermo J, Øie G (2000) Microbial environments in marine larviculture: impacts of algal growth rates on the bacterial load in six microalgae. Aquacult Int 8:275–287
Biddanda B, Benner R (1997) Carbon, nitrogen and carbohydrates fluxes during the production of particulate and dissolved organic matter by marine phytoplankton. Limnol Oceanogr 42:506–518
González JM, Simó R, Massana R, Covert JS, Casamayor EO et al (2000) Bacterial community structure associated with a dimethylsulfoniopropionate-producing North Atlantic algal bloom. Appl Environ Microbiol 66:4237–4246
Zubkov MV, Fuchs BM, Archer SD, Kiene RP, Amann R et al (2001) Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulphoniopropionate in an algal bloom in the North Sea. Environ Microbiol 3:304–311
Ruiz-Ponte C, Samain JF, Sánchez JL, Nicolas JL (1999) The benefit of a Roseobacter species on the survival of scallop larvae. Mar Biotechol 1:52–59
Hjelm M, Riaza A, Formoso F, Melchiorsen J, Gram L (2004) Seasonal incidence of autochthonous antagonistic Roseobacter spp. and Vibrionaceae strains in turbot larva (Scophthalmus maximus) rearing system. Appl Environ Microbiol 70:7288–7294
Brinkhoff T, Bach G, Heidorn T, Liang L, Schlingloff A, Simon M (2004) Antibiotic production by a Roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates. Appl Environ Microbiol 70:2560–2565
Buchan A, González JM, Moran MA (2005) Overview of the marine Roseobacter lineage. Appl Environ Microbiol 71:5665–5677
Planas M, Peréz-Lorenzo M, Hjelm M, Gram L, Fiksdal IU et al (2006) Probiotic effect in vivo Roseobacter strain 27–4 against Vibrio (Listonella) anguillarum infections in turbot (Scophthalmus maximus L.) larvae. Aquaculture 255:323–333
Porsby CH, Nielsen KF, Gram L (2008) Phaeobacter and Ruegeria species of the Roseobacter clade colonize separate niches in a Danish turbot (Scophthalmus maximus)-rearing farm and antagonize Vibrio anguillarum under different growth conditions. Appl Environ Microbiol 74:7356–7364
Brinkhoff T, Giebel HA, Simon M (2008) Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Arch Microbiol 189:531–539
D’Alvise PW, Melchiorsen J, Porsby CH, Nielsen KF, Gram L (2010) Inactivation of Vibrio anguillarum by attached and planktonic Roseobacter cells. Appl Environ Microbiol 76:2366–2370
Sharifah EN, Eguchi M (2011) The phytoplankton Nannochloropsis oculata enhances the ability of Roseobacter clade bacteria to inhibit the growth of Vibrio anguillarum. PLoS ONE 6:e26756
Provasoli L, McLaughlin JJA, Droop MR (1957) The development of artificial media for marine algae. Arch Mikrobiol 25:392–428
Eguchi M, Nishikawa T, MacDonald K, Cavicchioli R, Gottschal JC, Kjelleberg S (1996) Responses to stress and nutrient availability by marine ultramicrobacterium Sphingomonas sp. strain RB2256. Appl Environ Microbiol 62:1287–1294
Maruyama I, Hirayama K (1993) The culture of the rotifer Brachionus plicatilis with Chlorella vulgaris containing vitamin B12 in its cells. J World Aquac Soc 24:194–198
Miyamoto N, Eguchi M (1996) Development of monoclonal antibodies that specifically react with a fish pathogen, Vibrio anguillarum serotype J-O-1. Fish Sci 62:710–714
Miyamoto N, Eguchi M (1997) Direct detection of a fish pathogen, Vibrio anguillarum serotype J-O-1 in freshwater by fluorescent antibody technique. Fish Sci 63:253–257
ZoBell CE (1941) Studies on marine bacteria I. The cultural requirements of heterotrophic aerobes. J Mar Res 4:42–75
Herigstad B, Hamilton M, Heersink J (2001) How to optimize the drop plate method for enumerating bacteria. J Microbiol Met 44:121–129
Grima EM, Pèrez S, Camacho FG, Fernández FGA, Alonso DL et al (1994) Preservation of the marine microalga, Isochrysis galbana: influence on the fatty acid profile. Aquaculture 123:377–385
Sukenik A, Zmora O, Carmeli Y (1993) Biochemical quality of marine unicellular algae with special emphasis on lipid composition. II. Nannochloropsis sp. Aquaculture 117:313–326
Burney CM (1986) Bacterial utilization of total in situ dissolved carbohydrate in offshore waters. Limnol Oceanogr 31:427–431
Morishita H, Sano T, Kamiya N, Okuda M (1978) Growth-stimulating substances for Vibrio alginolyticus contained in Chlorella extract. Bull Jap Soc Sci Fish 44:665–671
Alyabyev AJ, Loseva NL, Gordon LK, Andreyeva IN, Rachimova GG et al (2007) The effect of changes in salinity on the energy yielding processes of Chlorella vulgaris and Dunaliella maritima cells. Thermochim Acta 458:65–70
Takabayashi M, Lew K, Johnson A, Marchi A, Dugdale R et al (2006) The effect of nutrient availability and temperature on chain length of the diatom, Skeletonema costatum. J Plank Res 28:831–840
Timmermans KR, van der Wagt B (2010) Variability in cell size, nutrient depletion, and growth rates of the Southern Ocean diatom Fragilariopsis kerguelensis (Bacillariophyceae) after prolonged iron limitation. J Phycol 46:497–506
Akatsu S, Al-Abdul-Elah KM, Teng SK (1983) Effects of salinity and water temperature on the survival and growth of brown-spotted grouper larvae (Epinephelus tauvina, Serranidae). J World Maricul Soc 14:624–635
Takeuchi T, Park G-S, Seikai T, Yokoyama M (2001) Taurine content in Japanese flounder Paralichthys olivaceus T&S and Red Sea bream Pagrus major T&S during the period of seed production. Aquac Res 32:244–248
Matsuo Y, Kasahara Y, Hagiwara A, Sakakura Y, Arakawa T (2006) Evaluation of larval quality of viviparous scorpionfish Sebastiscus marmoratus. Fish Sci 72:948–954
Mague TH, Friberg E, Hughes DJ, Morris I (1980) Extracellular release of carbon by marine phytoplankton; a physiological approach. Limnol Oceanogr 25:262–279
Sharp JH, Underhill PA, Frake AC (1980) Carbon budgets in batch and continuous cultures: how can we understand natural physiology of marine phytoplankton? J Plank Res 2:213–222
Knoechel R, Quinn EM (1989) Carbon dynamics of logarithmetic and stationary phase of phytoplankton as determined by track autoradiography. Cytometry 10:612–621
Lubzens E, Gibson O, Zmora O, Sukenik A (1995) Potential advantages of frozen algae (Nannochloropsis sp.) for rotifer (Brachionus plicatilis) culture. Aquaculture 133:295–309
Lucia-Pavon E, Sarma SSS, Nandini S (2001) Effect of different densities of live and dead Chlorella vulgaris on the population growth rotifers Brachionus calyciflorus and Brachionus patulus (Rotifera). Rev Biol Trop 49:895–902
Verdonck L, Grisez L, Sweetman E, Minkoff G, Sorgeloos P, Ollevier F, Swings J (1997) Vibrios associated with routine production of Brachionus plicatilis. Aquaculture 149:203–214
Prol-García MJ, Planas M, Pintado J (2010) Different colonization and residence time of Listonella anguillarum and Vibrio splendidus in the rotifer Brachionus plicatilis determined by real-time PCR and DGGE. Aquaculture 302:26–35
Thomson R, Macpherson HL, Riaza A, Birkbeck TH (2005) Vibrio splendidus biotype 1 as a cause of mortalities in hatchery-reared larval turbot Scophthalmus maximus (L.). J Appl Microbiol 99:243–250
Toranzo AE, Magariños B, Romalde JL (2005) A review of the main bacterial fish diseases in mariculture systems. Aquaculture 246:37–61
Natrah FMI, Kenmegne MM, Wiyoto W, Sorgeloos P, Bossier P et al (2011) Effects of micro-algae commonly used in aquaculture on acyl-homoserine lactone quorum sensing. Aquaculture 317:53–57