Cardiac Cell Therapy Trials: Chronic Myocardial Infarction and Congestive Heart Failure

Journal of Cardiovascular Translational Research - Tập 1 - Trang 201-206 - 2008
Philippe Menasché1
1Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Cardiovascular Surgery, University Paris Descartes, Faculté de Médecine, INSERM U 633, Paris, France

Tóm tắt

Although most cardiac cell therapy trials have focused on patients with acute myocardial infarction, attempts at “regenerating” chronically failing hearts have also been performed. These studies have entailed use of skeletal myoblasts and bone marrow-derived cells. In the case of skeletal myoblasts, the randomized placebo-controlled MAGIC trial has not achieved its primary end point as 6-month ejection fractions did not significantly differ between patients receiving cells or placebo, but the finding that the highest dose of myoblasts resulted in a significant anti-remodeling effect (a prespecified secondary end point) compared with the placebo group provides an encouraging signal. In the case of bone marrow cells, surgical injections of the mononuclear fraction combined with coronary artery bypass surgery have failed to show any substantial benefit. A catheter-based trial using a cross-over type of design has reported more successful outcomes, but its results will then have to be confirmed. Indeed, the most positive results have been reported with intraoperative epicardial injections of CD133 progenitors, which is probably explained by the angiogenic potential of these cells. There are three possible reasons for these mixed results. The first is the marked heterogeneity of cell functionality (particularly in the case of bone marrow), which would expectedly translate into variable clinical outcomes. The second reason is the low rate of sustained engraftment caused by early mechanical leakage followed by biologically induced cell death. The third possible explanation is a mismatch between the choice of end points and the presumed mechanism of action of the cells. The initial assumption that adult stem cells could affect myocardial tissue regeneration has led to the usual focus on ejection fraction as the major surrogate end point for treatment efficacy. It is now increasingly recognized that adult stem cells, in contrast to their embryonic counterparts, have little if any regenerative capacity and that their presumed beneficial effects more likely involve paracrine signaling and/or limitation of remodeling, in which case infarct size, perfusion, or left ventricular volumes might be more appropriate markers. Altogether, these observations provide a framework for future research the results of which will then have to be integrated into the protocol design of second-generation clinical trials so as to maximize their likelihood of yielding more successful results.

Tài liệu tham khảo

Menasche, P., Hagege, A. A., Scorsin, M., Pouzet, B., Desnos, M., Duboc, D., et al. (2001). Myoblast transplantation for heart failure. Lancet, 357, 279–280. Menasché, P., Hagège, A. A., Vilquin, J. T., Desnos, M., Abergel, E., Pouzet, B., et al. (2003). Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. Journal of the American College of Cardiology, 41(7), 1078–1083. Gavira, J. J., Herreros, J., Perez, A., Garcia-Velloso, M. J., Barba, J., Martin-Herrero, F., et al. (2006). Autologous skeletal myoblast transplantation in patients with nonacute myocardial infarction: 1-year follow-up. Journal of Thoracic and Cardiovascular Surgery, 131, 799–804. Siminiak, T., Kalawski, R., Fiszer, D., Jerzykowska, O., Rzezniczak, J., Rozwadowska, N., et al. (2004). Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: phase I clinical study with 12 months of follow-up. American Heart Journal, 148, 531–537. Dib, N., Michler, R. E., Pagani, F. D., Wright, S., Kereiakes, D. J., Lengerich, R., et al. (2005). Safety and feasibility of autologous myoblast transplantation in patients with ischemic cardiomyopathy: four-year follow-up. Circulation, 112, 1748–1755. Fernandes, S., Amirault, J. C., Lande, G., Nguyen, J. M., Forest, V., Bignolais, O., et al. (2006). Autologous myoblast transplantation after myocardial infarction increases the inducibility of ventricular arrhythmias. Cardiovascular Research, 69, 348–358. Leobon, B., Garcin, I., Menasche, P., Vilquin, J. T., Audinat, E., & Charpak, S. (2003). Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proceedings of the National Academy of Sciences of the United States of America, 100, 7808–7811. Abraham, M. R., Henrikson, C. A., Tung, L., Chang, M. G., Aon, M., Xue, T., et al. (2005). Antiarrhythmic engineering of skeletal myoblasts for cardiac transplantation. Circulation Research, 97, 159–167. Fukushima, S., Varela-Carver, A., Coppen, S. R., Yamahara, K., Felkin, L. E., Lee, J., et al. (2007). Direct intramyocardial but not intracoronary injection of bone marrow cells induces ventricular arrhythmias in a rat chronic ischemic heart failure model. Circulation, 115, 2254–2261. McCue, J. D., Swingen, C., Feldberg, T., Caron, G., Kolb, A., Denucci, C., et al. (2008). The real estate of myoblast cardiac transplantation: negative remodeling is associated with location. Journal of heart and lung transplantation, 27(1), 116–123. Hagege, A. A., Carrion, C., Menasche, P., Vilquin, J. T., Duboc, D., Marolleau, J. P., et al. (2006). Skeletal myoblast transplantation in ischemic heart failure: long-term follow-up of the first phase I cohort of patients. Circulation, 114(1 Suppl), I108–113. Menasché, Ph., Alfieri, O., Janssens, S., McKenna, W., Reichenspurner, H., Trinquart, L., et al. (2008). The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial. First randomized placebo-controlled study of myoblast transplantation. Circulation, 117, 1189–1200. Siminiak, T., Fiszer, D., Jerzykowska, O., Grygielska, B., Rozwadowska, N., Kalmucki, P., et al. (2005). Percutaneous trans-coronary-venous transplantation of autologous skeletal myoblasts in the treatment of post-infarction myocardial contractility impairment: the POZNAN trial. European Heart Journal, 26, 1188–1195. Biagini, E., Valgimigli, M., Smits, P. C., Poldermans, D., Schinkel, A. F., Rizzello, V., et al. (2006). Stress and tissue Doppler echocardiographic evidence of effectiveness of myoblast transplantation in patients with ischaemic heart failure. European Journal of Heart Failure, 8, 641–648. Ince, H., Petzsch, M., Rehders, T. C., Chatterjee, T., & Nienaber, C. A. (2004). Transcatheter transplantation of autologous skeletal myoblasts in postinfarction patients with severe left ventricular dysfunction. Journal of Endovascular Therapy, 11, 695–704. Dib, N., Dinsmore, J., Mozak, R., White, B., Moravec, S., & Diethrich, E. B. (2006). Safety and feasibility of percutaneous autologous skeletal myoblast transplantation for ischemic cardiomyopathy: Six-month interim analysis. Circulation, 114(Suppl II), II–88 (abstract). Ang, K. L., Shenje, L. T., Srinivasan, L., & Galinanes, M. (2006). Repair of the damaged heart by bone marrow cells: from experimental evidence to clinical hope. Annals of Thoracic Surgery, 82, 1549–1558. Galinanes, M., Loubani, M., Davies, J., Chin, D., Pasi, J., & Bell, P. R. (2004). Autotransplantation of unmanipulated bone marrow into scarred myocardium is safe and enhances cardiac function in humans. Cell Transplantation, 13, 7–13. Mocini, D., Staibano, M., Mele, L., Giannantoni, P., Menichella, G., Colivicchi, F., et al. (2006). Autologous bone marrow mononuclear cell transplantation in patients undergoing coronary artery bypass grafting. American Heart Journal, 151, 192–197. Hendrikx, M., Hensen, K., Clijsters, C., Jongen, H., Koninckx, R., Bijnens, E., et al. (2006). Recovery of regional but not global contractile function by the direct intramyocardial autologous bone marrow transplantation: results from a randomized controlled clinical trial. Circulation, 114(1 Suppl), I101–107. Bel, A., Messas, E., Agbulut, O., Richard, P., Samuel, J. L., Bruneval, P., et al. (2003). Transplantation of autologous fresh bone marrow into infarcted myocardium: a word of caution. Circulation, 108(Suppl 1), II247–252. Breitbach, M., Bostani, T., Roell, W., Xia, Y., Dewald, O., Nygren, J. M., et al. (2007). Potential risks of bone marrow cell transplantation into infarcted hearts. Blood, 110, 1362–1369. Stamm, C., Kleine, H. D., Choi, Y. H., Dunkelmann, S., Lauffs, J. A., Lorenzen, B., et al. (2007). Intramyocardial delivery of CD133 bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: safety and efficacy studies. Journal of Thoracic and Cardiovascular Surgery, 133, 717–725. Perin, E. C., Dohmann, H. F., Borojevic, R., Silva, S. A., Sousa, A. L., Silva, G. V., et al. (2004). Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation, 110(11 Suppl 1), II 213–218. Strauer, B. E., Brehm, M., Zeus, T., Bartsch, T., Schannwell, C., Antke, C., et al. (2005). Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study. Journal of the American College of Cardiology, 46, 1651–1658. Assmus, B., Honold, J., Schachinger, V., Britten, M. B., Fischer-Rasokat, U., Lehmann, R., et al. (2006). Transcoronary transplantation of progenitor cells after myocardial infarction. New England Journal of Medicine, 355, 1222–1232. Kissel, C. K., Lehmann, R., Assmus, B., Aicher, A., Honold, J., Fischer-Rasokat, U., et al. (2007). Selective functional exhaustion of hematopoietic progenitor cells in the bone marrow of patients with postinfarction heart failure. Journal of the American College of Cardiology, 49, 2341–2349. Ryan, J. M., Barry, F. P., Murphy, J. M., & Mahon, B. P. (2005). Mesenchymal stem cells avoid allogeneic rejection. Journal of Inflammation, 2(8), , 1–11. Murry, C. E., Reinecke, H., & Pabon, L. M. (2006). Regeneration gaps. Observations on stem cells and cardiac repair. Journal of the American College of Cardiology, 47, 1777–1785. Tambara, K., Sakakibara, Y., Sakaguchi, G., Lu, F., Premaratne, G. U., Lin, X., et al. (2003). Transplanted skeletal myoblasts can fully replace the infarcted myocardium when they survive in the host in large numbers. Circulation, 108(Suppl 1), I1259–I1263. Hudson, W., Collins, M. C., deFreitas, D., Sun, Y. S., Muller-Borer, B., & Kypson, A. P. (2007). Beating and arrested intramyocardial injections are associated with significant mechanical loss: implications for cardiac cell transplantation. Journal of Surgical Research, 142(2), 263–267. Gavira, J. J., Perez-Ilzarbe, M., Abizanda, G., Garcia-Rodriguez, A., Orbe, J., Paramo, J.A., et al. (2006). A comparison between percutaneous and surgical transplantation of autologous skeletal myoblasts in a swine model of chronic myocardial infarction. Cardiovascular Research, 71, 744–753. Hofmann, M., Wollert, K. C., Meyer, G. P., Menke, A., Arseniev, L., Hertenstein, B., et al. (2005). Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation, 111, 2198–2202. Menasche, P. (2007). Skeletal myoblasts as a therapeutic agent. Progress in Cardiovascular Diseases, 50, 7–17. Memon, I. A., Sawa, Y., Fukushima, N., Matsumiya, G., Miyagawa, S., Taketani, S., et al. (2005). Repair of impaired myocardium by means of implantation of engineered autologous myoblast sheets. Journal of Thoracic and Cardiovascular Surgery, 130, 1333–1341. Amsalem, Y., Mardor, Y., Feinberg, M. S., Landa, N., Miller, L., Daniels, D., et al. (2007). Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation, 116(Suppl I), I–38–45. Kawamoto, A., Iwasaki, H., Kusano, K., Murayama, T., Oyamada, A., Silver, M., et al. (2006). CD34-positive cells exhibit increased potency and safety for therapeutic neovascularization after myocardial infarction compared with total mononuclear cells. Circulation, 14, 2163–2169. Reinecke, H., Poppa, V., & Murry, C. E. (2002). Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. Journal of Molecular and Cellular Cardiology, 34, 241–249. Murry, C. E., Soonpaa, M. H., Reinecke, H., Nakajima, H., Nakajima, H. O., Rubart, M., et al. (2004). Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 428, 664–668. Leor, J., Patterson, M., Quinones, M. J., Kedes, L. H., & Kloner, R. A. (1996). Transplantation of fetal myocardial tissue into the infarcted myocardium of rat. A potential method for repair of infarcted myocardium? Circulation, 94(9 Suppl), I1332–I1336. Tomescot, A., Leschik, J., Bellamy, V., Dubois, G., Messas, E., Bruneval, P., et al. (2007). Differentiation in vivo of cardiac committed human embryonic stem cells in post-myocardial infarcted rats. Stem Cells, 25, 2200–2205.