Extensional vibration characteristics and screening of polarization charges in a ZnO piezoelectric semiconductor nanofiber

Journal of Applied Physics - Tập 124 Số 9 - 2018
Guolin Wang1, Jinxi Liu1, Xianglin Liu2, Wenjie Feng1, Jiashi Yang3
1Department of Engineering Mechanics, Mechanics, Shijiazhuang Tiedao University 1 , Shijiazhuang 050043, People's Republic of China
2Department of Mathematics and Physics, Shijiazhuang Tiedao University 2 , Shijiazhuang 050043, People's Republic of China
3Department of Mechanical and Materials Engineering, University of Nebraska 3 , Lincoln, Nebraska 68588, USA

Tóm tắt

We study extensional vibrations of a ZnO piezoelectric semiconductor fiber driven by a time-harmonic end force. A theoretical analysis is performed using a one-dimensional model based on the phenomenological theory of piezoelectric semiconductors consisting of the equations of piezoelectricity coupled to the continuity equation of electrons. A series of resonance frequencies are identified. It is found that these frequencies are lower than those of the corresponding piezoelectric dielectric fiber because the mobile charges in the semiconductor screen the effective polarization charges and thus weaken the piezoelectric stiffening effect. Various electromechanical fields at resonances are calculated and examined. Numerical results show that the effective surface polarization charge plays a more dominant role than the effective body polarization charge. The mobile charges can screen the body polarization charges greatly, but not the surface polarization charges.

Từ khóa


Tài liệu tham khảo

2005, IEEE Int. Freq. Control Symp., 52, 727, 10.1109/FREQ.2003.1275229

2003, Adv. Mater., 15, 432, 10.1002/adma.200390100

2013, Adv. Mater., 25, 3371, 10.1002/adma.201300296

2012, Nano Lett., 12, 1959, 10.1021/nl204440g

2007, Adv. Mater., 19, 67, 10.1002/adma.200601162

2009, Adv. Mater., 21, 2185, 10.1002/adma.200803605

2011, Nanotechnology, 22, 465401, 10.1088/0957-4484/22/46/465401

2006, Nano Lett., 6, 2768, 10.1021/nl061802g

2010, Nano Today, 5, 540, 10.1016/j.nantod.2010.10.008

2014, Nanotechnology, 25, 135204, 10.1088/0957-4484/25/13/135204

2010, Nanotechnology, 21, 265502, 10.1088/0957-4484/21/26/265502

2011, J. Appl. Phys., 109, 031101, 10.1063/1.3533402

2015, Nano Energy, 14, 257, 10.1016/j.nanoen.2014.11.051

2014, Natl. Sci. Rev., 1, 62, 10.1093/nsr/nwt002

2007, Nano Lett., 7, 2499, 10.1021/nl071310j

2009, Nano Lett., 9, 1103, 10.1021/nl803547f

2017, Nano Energy, 40, 82, 10.1016/j.nanoen.2017.07.049

2017, Smart Mater. Struct., 26, 025030, 10.1088/1361-665X/aa542e

2017, MRS Adv., 2, 3421, 10.1557/adv.2017.301

2012, Adv. Mater., 24, 4719, 10.1002/adma.201104588

2018, J. Appl. Phys., 123, 025709, 10.1063/1.5009485

2018, Nano Energy, 43, 22, 10.1016/j.nanoen.2017.11.002

1973, Acoustic Fields and Waves in Solids

1988, Semiconductor Device Fundamentals, 2nd ed

1997, Int. J. Eng. Sci., 35, 1387, 10.1016/S0020-7225(97)00060-8

2015, Smart Mater. Struct., 24, 025021, 10.1088/0964-1726/24/2/025021

2014, Sci. Rep.-UK, 4, 5617, 10.1038/srep05617

2008, J. Acoust. Soc. Am., 123, 3694, 10.1121/1.2935083

2015, Philos. Mag. Lett., 95, 92, 10.1080/09500839.2015.1011249

2010, Int. J. Solids Struct., 47, 816, 10.1016/j.ijsolstr.2009.11.016

2011, World J. Mech., 1, 247, 10.4236/wjm.2011.15031

2016, Analysis on the anti-plane deformations of a piezoelectric semiconductor plate with a hole, 106

2006, Arch. Appl. Mech., 76, 381, 10.1007/s00419-006-0035-7

2005, Int. J. Fract., 136, L27, 10.1007/s10704-006-6943-2

2007, Int. J. Solids Struct., 44, 3928, 10.1016/j.ijsolstr.2006.10.033

2014, CMES, 99, 273, 10.3970/cmes.2014.099.273

2014, Eng. Fract. Mech., 126, 27, 10.1016/j.engfracmech.2014.05.011

2016, Int. J. Solids Struct., 94, 50, 10.1016/j.ijsolstr.2016.05.009

2016, Eng. Fract. Mech., 165, 183, 10.1016/j.engfracmech.2016.02.057

2016, J. Zhejiang Univ. Sci. A, 17, 37, 10.1631/jzus.A1500213

2016, AIP Adv., 6, 045301, 10.1063/1.4945752

2017, J. Appl. Phys., 122, 204502, 10.1063/1.4996754

2018, J. Mech. Mater. Struct., 13, 103, 10.2140/jomms.2018.13.103

2010, Mater. Sci. Eng. R, 70, 320, 10.1016/j.mser.2010.06.015