Numerical analysis of a two-phase flow discrete fracture matrix model

Springer Science and Business Media LLC - Tập 141 - Trang 21-62 - 2018
Jérôme Droniou1, Julian Hennicker2,3, Roland Masson2
1School of Mathematical Sciences, Monash University, Victoria, Australia
2Université Côte d’Azur, CNRS, Inria Team Coffee, LJAD, Nice, France
3Total SA, Centre scientifique et technique Jean-Féger, Pau, France

Tóm tắt

We present a new model for two phase Darcy flows in fractured media, in which fractures are modelled as submanifolds of codimension one with respect to the surrounding domain (matrix). Fractures can act as drains or as barriers, since pressure discontinuities at the matrix-fracture interfaces are permitted. Additionally, a layer of damaged rock at the matrix-fracture interfaces is accounted for. The numerical analysis is carried out in the general framework of the Gradient Discretisation Method. Compactness techniques are used to establish convergence results for a wide range of possible numerical schemes; the existence of a solution for the two phase flow model is obtained as a byproduct of the convergence analysis. A series of numerical experiments conclude the paper, with a study of the influence of the damaged layer on the numerical solution.

Tài liệu tham khảo

Aghili, J., Brenner, K., Hennicker, J., Masson, R., Trenty, L.: Two-phase discrete fracture matrix models with nonlinear transmission conditions (2018). https://hal.archives-ouvertes.fr/hal-01764432. Accessed 3 May 2018 Ahmed, R., Edwards, M., Lamine, S., Huisman, B., Pal, M.: Control-volume distributed multi-point flux approximation coupled with a lower-dimensional fracture model. J. Comput. Phys. 284, 462–489 (2015) Ahmed, R., Edwards, M.G., Lamine, S., Huisman, B.A., Pal, M.: Three-dimensional control-volume distributed multi-point flux approximation coupled with a lower-dimensional surface fracture model. J. Comput. Phys. 303, 470–497 (2015) Alboin, C., Jaffré, J., Roberts, J., Serres, C.: Modeling fractures as interfaces for flow and transport in porous media. SIAM J. Sci. Comput. 295, 13–24 (2002) Angot, P., Boyer, F., Hubert, F.: Asymptotic and numerical modelling of flows in fractured porous media. ESAIM. Math. Model. Numer. Anal. 43(2), 239–275 (2009) Antonietti, P.F., Formaggia, L., Scotti, A., Verani, M., Verzott, N.: Mimetic finite difference approximation of flows in fractured porous media. ESAIM M2AN 50, 809–832 (2016) Berrone, S., Pieraccini, S., Scialò, S.: An optimization approach for large scale simulations of discrete fracture network flows. J. Comput. Phys. 256, 838–853 (2014) Bogdanov, I.I., Mourzenko, V.V., Thovert, J.-F., Adler, P.M.: Two-phase flow through fractured porous media. Phys. Rev. E 68(2), 026703 (2003) Brenner, K., Groza, M., Guichard, C., Lebeau, G., Masson, R.: Gradient discretization of hybrid-dimensional Darcy flows in fractured porous media. Numer. Math. 134(3), 569–609 (2016) Brenner, K., Groza, M., Guichard, C., Masson, R.: Vertex approximate gradient scheme for hybrid-dimensional two-phase Darcy flows in fractured porous media. ESAIM. Math. Model. Numer. Anal. 2(49), 303–330 (2015) Brenner, K., Hennicker, J., Masson, R., Samier, P.: Gradient discretization of hybrid-dimensional Darcy flow in fractured porous media with discontinuous pressures at matrix-fracture interfaces. IMA J. Numer. Anal. 37(3), 1551–1585 (2017) Brenner, K., Hennicker, J., Masson, R., Samier, P.: Hybrid dimensional modelling of two-phase flow through fractured porous media with enhanced matrix fracture transmission conditions. J. Comput. Phys. 357, 100–124 (2018) Cheng, H.M., Droniou, J., Le, K.-N.: Convergence analysis of a family of ELLAM schemes for a fully coupled model of miscible displacement in porous media, pp. 1–38 (2017) D’Angelo, C., Scotti, A.: A mixed finite element method for Darcy flow in fractured porous media with non-matching grids. ESAIM. Math. Model. Numer. Anal. 46(2), 465–489 (2012) Demmel, J., Eisenstat, S., Gilbert, J., Li, X., Liu, J.: A supernodal approach to sparse partial pivoting. SIAM J. Matrix Anal. Appl. 20(3), 720–750 (1999) Demmel, J., Gilbert, J., Grigori, L., Li, X., Shao, M., Yamazaki, I.: Technical Report LBNL-44289, Lawrence Berkeley National Laboratory, SuperLU Users’ Guide, September (1999). http://crd.lbl.gov/~xiaoye/SuperLU Droniou, J.: Intégration et espaces de sobolev à valeurs vectorielles. Polycopiés de l’Ecole Doctorale de Maths-Info de Marseille (2001). https://hal.archives-ouvertes.fr/hal-01382368. Accessed 19 Dec 2016 Droniou, J.: Finite volume schemes for diffusion equations: introduction to and review of modern methods. Math. Models Methods Appl. Sci. 24(8), 1575–1619 (2014) Droniou, J., Eymard, R.: Uniform-in-time convergence of numerical methods for non-linear degenerate parabolic equations. Numer. Math. 132(4), 721–766 (2016) Droniou, J., Eymard, R., Feron, P.: Gradient Schemes for Stokes problem. IMA J. Numer. Anal. 36(4), 1636–1669 (2016) Droniou, J., Eymard, R., Gallouët, T., Guichard, C., Herbin, R.: The Gradient Discretisation Method. Mathematics and Applications. Springer, Heidelberg (2018). (To appear) Droniou, J., Eymard, R., Gallouët, T., Herbin, R.: A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci. 20(2), 265–295 (2010) Droniou, J., Eymard, R., Gallouët, T., Herbin, R.: Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations. Math. Models Methods Appl. Sci. 13(23), 2395–2432 (2013) Droniou, J., Eymard, R., Herbin, R.: Gradient schemes: generic tools for the numerical analysis of diffusion equations. M2AN Math. Model. Numer. Anal. 50(3), 749–781 (2016). (Special issue—Polyhedral discretization for PDE) Droniou, J., Eymard, R., Talbot, K.S.: Convergence in \(C([0;T];L^2(\Omega ))\) of weak solutions to perturbed doubly degenerate parabolic equations. J. Differ. Equ. 260(11), 7821–7860 (2016) Droniou, J., Hennicker, J., Masson, R.: Uniform-in-time convergence of numerical schemes for a two-phase discrete fracture model, vol. 199, pp. 275–283 (2017) Droniou, J., Talbot, K.S.: On a miscible displacement model in porous media flow with measure data. SIAM J. Math. Anal. 46(5), 3158–3175 (2014) Eymard, R., Guichard, C., Herbin, R.: Small-stencil 3D schemes for diffusive flows in porous media. ESAIM. Math. Model. Numer. Anal. 46(2), 265–290 (2012) Eymard, R., Guichard, C., Herbin, R., Masson, R.: Gradient schemes for two-phase flow in heterogeneous porous media and Richards equation. ZAMM Z. Angew. Math. Mech. 94(7–8), 560–585 (2014) Faille, I., Fumagalli, A., Jaffré, J., Roberts, J.E.: Model reduction and discretization using hybrid finite volumes of flow in porous media containing faults. Comput. Geosci. 20, 317–339 (2016) Flauraud, E., Nataf, F., Faille, I., Masson, R.: Domain decomposition for an asymptotic geological fault modeling. C. R. Mec. 331(12), 849–855 (2003) Fumagalli, A., Scotti, A.: A reduced model for flow and transport in fractured porous media with non-matching grids. In: Cangiani, A., Davidchack, R., Georgoulis, E., Gorban, A., Levesley, J., Tretyakov, M. (eds) Numerical Mathematics and Advanced Applications 2011. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33134-3_53 Haegland, H., Assteerawatt, A., Dahle, H., Eigestad, G., Helmig, R.: Comparison of cell- and vertex-centered discretization methods for flow in a two-dimensional discrete-fracture-matrix system. Adv. Water Resour. 32, 1740–1755 (2009) Hoteit, H., Firoozabadi, A.: An efficient numerical model for incompressible two-phase flow in fractured media. Adv. Water Resour. 31(6), 891–905 (2008) Jaffré, J., Mnejja, M., Roberts, J.: A discrete fracture model for two-phase flow with matrix-fracture interaction. Procedia Comput. Sci. 4, 967–973 (2011) Karimi-Fard, M., Durlofsky, L., Aziz, K.: An efficient discrete-fracture model applicable for general-purpose reservoir simulators. SPE J. 9(02), 227–236 (2004) Martin, V., Jaffré, J., Roberts, J.E.: Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26(5), 1667–1691 (2005) Matthai, S.K., Mezentsev, A.A., Belayneh, M.: Finite element—node-centered finite-volume two-phase-flow experiments with fractured rock represented by unstructured hybrid-element meshes. SPE Reserv. Eval. Eng. 10(06), 740–756 (2007) Monteagudo, J.E., Firoozabadi, A.: Control-volume model for simulation of water injection in fractured media: incorporating matrix heterogeneity and reservoir wettability effects. SPE J. 12(03), 355–366 (2007) Reichenberger, V., Jakobs, H., Bastian, P., Helmig, R.: A mixed-dimensional finite volume method for two-phase flow in fractured porous media. Adv. Water Resour. 29(7), 1020–1036 (2006) Sandve, T., Berre, I., Nordbotten, J.: An efficient multi-point flux approximation method for discrete fracture-matrix simulations. J. Comput. Phys. 231(9), 3784–3800 (2012) Schwenck, N., Flemisch, B., Helmig, R., Wohlmuth, B.: Dimensionally reduced flow models in fractured porous media: crossings and boundaries. Comput. Geosci. 19, 1219–1230 (2015) Tunc, X., Faille, I., Gallouët, T., Cacas, M.C., Havé, P.: A model for conductive faults with non-matching grids. Comput. Geosci. 16(2), 277–296 (2012) Xing, F., Masson, R., Lopez, S.: Parallel vertex approximate gradient discretization of hybrid-dimensional Darcy flow and transport in discrete fracture networks. Comput. Geosci. 21, 595–617 (2017) Xing, F., Masson, R., Lopez, S.: Parallel numerical modelling of hybrid-dimensional compositional non-isothermal Darcy flows in fractured porous media. J. Comput. Phys. 345, 637–664 (2018)