Knockdown of c-Myc expression by RNAi inhibits MCF-7 breast tumor cells growth in vitro and in vivo
Tóm tắt
Breast cancer is the leading cause of cancer death in women worldwide. Elevated expression of c-Myc is a frequent genetic abnormality seen in this malignancy. For a better understanding of its role in maintaining the malignant phenotype, we used RNA interference (RNAi) directed against c-Myc in our study. RNAi provides a new, reliable method to investigate gene function and has the potential for gene therapy. The aim of the study was to examine the anti-tumor effects elicited by a decrease in the protein level of c-Myc by RNAi and its possible mechanism of effects in MCF-7 cells. A plasmid-based polymerase III promoter system was used to deliver and express short interfering RNA (siRNA) targeting c-myc to reduce its expression in MCF-7 cells. Western blot analysis was used to measure the protein level of c-Myc. We assessed the effects of c-Myc silencing on tumor growth by a growth curve, by soft agar assay and by nude mice experiments in vivo. Standard fluorescence-activated cell sorter analysis and TdT-mediated dUTP nick end labelling assay were used to determine apoptosis of the cells. Our data showed that plasmids expressing siRNA against c-myc markedly and durably reduced its expression in MCF-7 cells by up to 80%, decreased the growth rate of MCF-7 cells, inhibited colony formation in soft agar and significantly reduced tumor growth in nude mice. We also found that depletion of c-Myc in this manner promoted apoptosis of MCF-7 cells upon serum withdrawal. c-Myc has a pivotal function in the development of breast cancer. Our data show that decreasing the c-Myc protein level in MCF-7 cells by RNAi could significantly inhibit tumor growth both in vitro and in vivo, and imply the therapeutic potential of RNAi on the treatment of breast cancer by targeting overexpression oncogenes such as c-myc, and c-myc might be a potential therapeutic target for human breast cancer.
Tài liệu tham khảo
WHO: World Health Report 2003. 2003, Geneva: World Health Organization
Dang CV: c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol. 1999, 19: 1-11.
Liao DJ, Dickson RB: c-Myc in breast cancer. Endocr Relat Cancer. 2000, 7: 143-164. 10.1677/erc.0.0070143.
Doisneau-Sixou SF, Sergio CM, Carroll JS, Hui R, Musgrove EA, Sutherland RL: Estrogen and antiestrogen regulation of cell cycle progression in breast cancer cells. Endocr Relat Cancer. 2003, 10: 179-186. 10.1677/erc.0.0100179.
Hutchinson JN, Muller WJ: Transgenic mouse models of human breast cancer. Oncogene. 2000, 19: 6130-6137. 10.1038/sj.onc.1203970.
Pelengaris S, Khan M, Evan G: c-Myc: more than just a matter of life and death. Nat Rev Cancer. 2002, 2: 764-776. 10.1038/nrc904.
Hannon GJ: RNA interference. Nature. 2002, 418: 244-251. 10.1038/418244a.
Dykxhoorn DM, Novina CD, Sharp PA: Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol. 2003, 4: 457-467. 10.1038/nrm1129.
Sui G, Soohoo C, Affar EB, Gay F, Shi Y, Forrester WC, Shi Y: A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci USA. 2002, 99: 5515-5520. 10.1073/pnas.082117599.
Yu JY, DeRuiter SL, Turner DL: RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA. 2002, 99: 6047-6052. 10.1073/pnas.092143499.
Williams NS, Gaynor RB, Scoggin S, Verma U, Gokaslan T, Simmang C, Fleming J, Tavana D, Frenkel E, Becerra C: Identification and validation of genes involved in the pathogenesis of colorectal cancer using cDNA microarrays and RNA interference. Clin Cancer Res. 2003, 9: 931-946.
Zhou CQ, Liu S, Xue LY, Wang YH, Zhu HX, Lu N, Xu NZ: Down-regulation of gamma-synuclein in human esophageal squamous cell carcinoma. World J Gastroenterol. 2003, 9: 1900-1903.
Malumbres M, Barbacid M: To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer. 2001, 1: 222-231. 10.1038/35106065.
Nesbit CE, Tersak JM, Prochownik EV: MYC oncogenes and human neoplastic disease. Oncogene. 1999, 18: 3004-3016. 10.1038/sj.onc.1202746.
Felsher DW, Bishop JM: Reversible tumorigenesis by MYC in hematopoietic lineages. Mol Cell. 1999, 4: 199-207. 10.1016/S1097-2765(00)80367-6.
Pelengaris S, Littlewood T, Khan M, Elia G, Evan G: Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol Cell. 1999, 3: 565-577. 10.1016/S1097-2765(00)80350-0.
Jain M, Arvanitis C, Chu K, Dewey W, Leonhardt E, Trinh M, Sundberg CD, Bishop JM, Felsher DW: Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science. 2002, 297: 102-104. 10.1126/science.1071489.
D'Cruz CM, Gunther EJ, Boxer RB, Hartman JL, Sintasath L, Moody SE, Cox JD, Ha SI, Belka GK, Golant A, et al: c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nat Med. 2001, 7: 235-239. 10.1038/84691.
Steiner MS, Anthony CT, Lu Y, Holt JT: Antisense c-myc retroviral vector suppresses established human prostate cancer. Hum Gene Ther. 1998, 9: 747-755.
Watson PH, Pon RT, Shiu RPC: Inhibition of c-myc expression by phosphorothioate antisense oligonucleotide identifies a critical role for c-myc in the growth of human breast cancer. Cancer Res. 1991, 51: 3996-4000.
Sawyers CL, Callahan W, Witte ON: Dominant negative MYC blocks transformation by ABL oncogenes. Cell. 1992, 70: 901-910. 10.1016/0092-8674(92)90241-4.
Braasch DA, Corey DR: Novel antisense and peptide nucleic acid strategies for controlling gene expression. Biochemistry. 2002, 41: 4503-4510. 10.1021/bi0122112.
Bertrand JR, Pottier M, Vekris A, Opolon P, Maksimenko A, Malvy C: Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem Biophys Res Commun. 2002, 296: 1000-1004. 10.1016/S0006-291X(02)02013-2.
Pelengaris S, Khan M, Evan GI: Suppression of Myc-induced apoptosis in beta cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell. 2002, 109: 321-334. 10.1016/S0092-8674(02)00738-9.
Karlsson A, Giuriato S, Tang F, Fung-Weier J, Levan G, Felsher DW: Genomically complex lymphomas undergo sustained tumor regression upon MYC inactivation unless they acquire novel chromosomal translocations. Blood. 2003, 101: 2797-2803. 10.1182/blood-2002-10-3091.
Huettner CS, Zhang P, Van Etten RA, Tenen DG: Reversibility of acute B-cell leukaemia induced by BCR-ABL1. Nat Genet. 2000, 24: 57-60. 10.1038/71691.
Chin L, Tam A, Pomerantz J, Wong M, Holash J, Bardeesy N, Shen Q, O'Hagan R, Pantginis J, Zhou H, et al: Essential role for oncogenic Ras in tumor maintenance. Nature. 1999, 400: 468-472. 10.1038/22788.
D'Agnano I, Valentini A, Fornari C, Bucci B, Starace G, Felsani A, Citro G: Myc down-regulation induces apoptosis in M14 melanoma cells by increasing p27Kip1 levels. Oncogene. 2001, 20: 2814-2825. 10.1038/sj.onc.1204392.
Leonetti C, D'Agnano I, Lozupone F, Valentini A, Geiser T, Zon G, Calabretta B, Citro G, Zupi G: Antitumor effect of c-myc antisense phosphorothioate oligodeoxynucleotides on human melanoma cells in vitro and and in mice. J Natl Cancer Inst. 1996, 88: 419-429.
Balaji KC, Koul H, Mitra S, Maramag C, Reddy P, Menon M, Malhotra RK, Laxmanan S: Antiproliferative effects of c-myc antisense oligonucleotide in prostate cancer cells: a novel therapy in prostate cancer. Urology. 1997, 50: 1007-1015. 10.1016/S0090-4295(97)00390-7.
Citro G, D'Agnano I, Leonetti C, Perini R, Bucci B, Zon G, Calabretta B, Zupi G: c-myc antisense oligodeoxynucleotides enhance the efficacy of cisplatin in melanoma chemotherapy in vitro and in nude mice. Cancer Res. 1998, 58: 283-289.
Thiantanawat A, Long BJ, Brodie AM: Signaling pathways of apoptosis activated by aromatase inhibitors and antiestrogens. Cancer Res. 2003, 63: 8037-8050.
Magnet KJ, Orr MS, Cleveland JL, Rodriguez-Galindo C, Yang H, Yang C, Di YM, Jain PT, Gewirtz DA: Suppression of c-myc expression and c-Myc function in response to sustained DNA damage in MCF-7 breast tumor cells. Biochem Pharmacol. 2001, 62: 593-602. 10.1016/S0006-2952(01)00699-2.
Lloyd RV, Erickson LA, Jin L, Kulig E, Qian X, Cheville JC, Scheithauer BW: p27kip1: a multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. Am J Pathol. 1999, 154: 313-323.
Kitabwalla M, Ruprecht RM: RNA interference – a new weapon against HIV and beyond. N Engl J Med. 2002, 347: 1364-1367. 10.1056/NEJMcibr022294.
Ge Q, McManus MT, Nguyen T, Shen CH, Sharp PA, Eisen HN, Chen J: RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc Natl Acad Sci USA. 2003, 100: 2718-2723. 10.1073/pnas.0437841100.
Brummelkamp TR, Bernards R, Agami R: Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell. 2002, 2: 243-247. 10.1016/S1535-6108(02)00122-8.
Yang G, Thompson JA, Fang B, Liu J: Silencing of H-ras gene expression by retrovirus-mediated siRNA decreases transformation efficiency and tumor growth in a model of human ovarian cancer. Oncogene. 2003, 22: 5694-5701. 10.1038/sj.onc.1206858.
Scherr M, Battmer K, Winkler T, Heidenreich O, Ganser A, Eder M: Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood. 2003, 101: 1566-1569. 10.1182/blood-2002-06-1685.
Milner J: RNA interference for treating cancers caused by viral infection. Expert Opin Biol Ther. 2003, 3: 459-467. 10.1517/eobt.3.3.459.21174.
Matsukura S, Jones PA, Takai D: Establishment of conditional vectors for hairpin siRNA knockdowns. Nucleic Acids Res. 2003, 31: e77-10.1093/nar/gng077.
van de Wetering M, Oving I, Muncan V, Pon Fong MT, Brantjes H, van Leenen D, Holstege FC, Brummelkamp TR, Agami R, Clevers H: Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep. 2003, 4: 609-615. 10.1038/sj.embor.embor865.