Improvement of Tol2 Transposon System Enabling Efficient Protein Production in CHO Cells

Springer Science and Business Media LLC - Tập 26 - Trang 767-775 - 2021
Su Young Hwang1, Yun Haeng Lee1, Myeong Uk Kuk1, Jae Won Kim1, Sekyung Oh2,3, Joon Tae Park1
1Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
2Department of Medical Sciences, Catholic Kwandong University College of Medicine, Incheon, Korea
3Institute for Biomedical Research, Catholic Kwandong University International St. Mary’s Hospital, Incheon, Korea

Tóm tắt

Establishment of mammalian cell lines with high protein productivity is an important object in the field of biopharmaceutics. Toward this end, Tol2 transposon-based expression systems have been developed as effective means to facilitate protein productivity. Here, we proposed novel strategies to improve conventional Tol2 transposon systems. The use of Tol2 transposase mRNA as a helper vector improved the efficiency of transgene integration and protein production. Moreover, the use of the Tol2 transposon vector containing the minimum cis-sequences essential for transposition (mini-TP) also served as one of the efficient means to generate recombinant cells that enable higher protein production. Furthermore, mini-TP showed a more beneficial response to DNA methylation inhibitors, suggesting that the use of mini-TP with DNA methylation inhibitors could be used as a means of commercial production. Taken together, our results provide effective strategies to improve the Tol2 transposon-based expression system. These strategies will be applicable to the production of therapeutic proteins and open new avenues in biopharmaceutical research.

Tài liệu tham khảo

Balasubramanian, S., Y. Rajendra, L. Baldi, D. L. Hacker, and F. M. Wurm (2016) Comparison of three transposons for the generation of highly productive recombinant CHO cell pools and cell lines. Biotechnol. Bioeng. 113: 1234–1243. Geurts, A. M., Y. Yang, K. J. Clark, G. Liu, Z. Cui, A. J. Dupuy, J. B. Bell, D. A. Largaespada, and P. B. Hackett (2003) Gene transfer into genomes of human cells by the sleeping beauty transposon system. Mol. Ther. 8: 108–117. Balciunas, D., K. J. Wangensteen, A. Wilber, J. Bell, A. Geurts, S. Sivasubbu, X. Wang, P. B. Hackett, D. A. Largaespada, R. S. McIvor, and S. C. Ekker (2006) Harnessing a high cargo-capacity transposon for genetic applications in vertebrates. PLoS Genet. 2: e169. Ding, S., X. Wu, G. Li, M. Han, Y. Zhuang, and T. Xu (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell. 122: 473–483. Muñoz-López, M. and J. L. García-Pérez (2010) DNA transposons: nature and applications in genomics. Curr. Genomics. 11: 115–128. Bire, S., D. Ley, S. Casteret, N. Mermod, Y. Bigot, and F. Rouleux-Bonnin (2013) Optimization of the piggyBac transposon using mRNA and insulators: Toward a more reliable gene delivery system. PLoS One. 8: e82559. Wilber, A., J. L. Frandsen, J. L. Geurts, D. A. Largaespada, P. B. Hackett, and R. S. McIvor (2006) RNA as a source of transposase for sleeping beauty-mediated gene insertion and expression in somatic cells and tissues. Mol. Ther. 13: 625–630. Urasaki, A., G. Morvan, and K. Kawakami (2006) Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics. 174: 639–649. Miller, J. L. and P. A. Grant (2013) The role of DNA methylation and histone modifications in transcriptional regulation in humans. Subcell. Biochem. 61: 289–317. Feschotte, C. and E. J. Pritham (2007) DNA transposons and the evolution of eukaryotic genomes. Annu. Rev. Genet. 41: 331–368. Garrison, B. S., S. R. Yant, J. G. Mikkelsen, and M. A. Kay (2007) Postintegrative gene silencing within the Sleeping Beauty transposition system. Mol. Cell. Biol. 27: 8824–8833. Haryadi, R., S. Ho, Y. J. Kok, H. X. Pu, L. Zheng, N. A. Pereira, B. Li, X. Bi, L. T. Goh, Y. Yang, and Z. Song (2015) Optimization of heavy chain and light chain signal peptides for high level expression of therapeutic antibodies in CHO cells. PLoS One. 10: e0116878. Clarke, C., P. Doolan, N. Barron, P. Meleady, F. O’Sullivan, P. Gammell, M. Melville, M. Leonard, and M. Clynes (2011) Predicting cell-specific productivity from CHO gene expression. J. Biotechnol. 151: 159–165. Kawakami, K. (2007) Tol2: a versatile gene transfer vector in vertebrates. Genome Biol. 8: S7. Clark, K. J., M. D. Urban, K. J. Skuster, and S. C. Ekker (2011) Transgenic zebrafish using transposable elements. Methods Cell Biol. 104: 137–149. Hackett, P. B. (2007) Integrating DNA vectors for gene therapy. Mol. Ther. 15: 10–12. Tharmalingam, T., H. Barkhordarian, N. Tejeda, K. Daris, S. Yaghmour, P. Yam, F. Lu, C. Goudar, T. Munro, and J. Stevens (2018) Characterization of phenotypic and genotypic diversity in subclones derived from a clonal cell line. Biotechnol. Prog. 34: 613–623. Yang, F., L. Zhang, J. Li, J. Huang, R. Wen, L. Ma, D. Zhou, and L. Li (2010) Trichostatin A and 5-azacytidine both cause an increase in global histone H4 acetylation and a decrease in global DNA and H3K9 methylation during mitosis in maize. BMC Plant Biol. 10: 178. Wu, S. C. Y., Y. J. J. Meir, C. J. Coates, A. M. Handler, P. Pelczar, S. Moisyadi, and J. M. Kaminski (2006) piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 103: 15008–15013. Ni, J., K. J. Clark, S. C. Fahrenkrug, and S. C. Ekker (2008) Transposon tools hopping in vertebrates. Brief. Funct. Genomics. 7: 444–453. Hunter, M., P. Yuan, D. Vavilala, and M. Fox (2019) Optimization of protein expression in mammalian cells. Curr. Protoc. Protein Sci. 95: e77. Owczarek, B., A. Gerszberg, and K. Hnatuszko-Konka (2019) A brief reminder of systems of production and chromatography-based recovery of recombinant protein biopharmaceuticals. Biomed Res. Int. 2019: 4216060. Balasubramanian, S., F. M. Wurm, and D. L. Hacker (2016) Multigene expression in stable CHO cell pools generated with the piggyBac transposon system. Biotechnol. Prog. 32: 1308–1317. Narayanavari, S. A., S. S. Chilkunda, Z. Ivics, and Z. Izsvak (2017) Sleeping Beauty transposition: from biology to applications. Crit. Rev. Biochem. Mol. Biol. 52: 18–44. Troyanovsky, B., V. Bitko, V. Pastukh, B. Fouty, and V. Solodushko (2016) The functionality of minimal PiggyBac transposons in mammalian cells. Mol. Ther. Nucleic Acids. 5: e369. Macdonald, J., L. Taylor, A. Sherman, K. Kawakami, Y. Takahashi, H. M. Sang, and M. J. McGrew (2012) Efficient genetic modification and germ-line transmission of primordial germ cells using piggyBac and Tol2 transposons. Proc. Natl. Acad. Sci. U. S. A. 109: E1466–E1472. Xu, D. H., X. Y. Wang, Y. L. Jia, T. Y. Wang, Z. W. Tian, X. Feng, and Y. N. Zhang (2018) SV40 intron, a potent strong intron element that effectively increases transgene expression in transfected Chinese hamster ovary cells. J. Cell. Mol. Med. 22: 2231–2239. Lesueur, L. L., L. M. Mir, and F. M. André (2016) Overcoming the specific toxicity of large plasmids electrotransfer in primary cells in vitro. Mol. Ther. Nucleic Acids. 5: e291. Gibney, E. R. and C. M. Nolan (2010) Epigenetics and gene expression. Heredity. 105: 4–13. Jansz, N. (2019) DNA methylation dynamics at transposable elements in mammals. Essays Biochem. 63: 677–689. Iida, A., A. Shimada, A. Shima, N. Takamatsu, H. Hori, K. Takeuchi, and A. Koga (2006) Targeted reduction of the DNA methylation level with 5-azacytidine promotes excision of the medaka fish Tol2 transposable element. Genet. Res. 87: 187–193.