Nonalcoholic fatty liver disease: molecular pathways and therapeutic strategies

Lipids in Health and Disease - Tập 12 - Trang 1-11 - 2013
Yue Ye Huang1, Aaron M Gusdon2, Shen Qu1,3
1Department of Endocrinology and Metabolism, Shanghai 10th People’s Hospital, School of Medicine, Tongji University, Shanghai, China
2Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, USA
3Department of Endocrinology and Metabolism, Nanjing Medical University, Nanjing, China

Tóm tắt

Along with rising numbers of patients with metabolic syndrome, the prevalence of nonalcoholic fatty liver disease (NAFLD) has increased in proportion with the obesity epidemic. While there are no established treatments for NAFLD, current research is targeting new molecular mechanisms that underlie NAFLD and associated metabolic disorders. This review discusses some of these emerging molecular mechanisms and their therapeutic implications for the treatment of NAFLD. The basic research that has identified potential molecular targets for pharmacotherapy will be outlined.

Tài liệu tham khảo

Zhou J: Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARgamma in promoting steatosis. Gastroenterology. 2008, 134 (2): 556-567. 10.1053/j.gastro.2007.11.037 Blumberg B: SXR, a novel steroid and xenobiotic-sensing nuclear receptor. Genes Dev. 1998, 12 (20): 3195-3205. 10.1101/gad.12.20.3195 Timsit YE, Negishi M: CAR and PXR: the xenobiotic-sensing receptors. Steroids. 2007, 72 (3): 231-246. 10.1016/j.steroids.2006.12.006 Zhou J: A novel pregnane X receptor-mediated and sterol regulatory element-binding protein-independent lipogenic pathway. J Biol Chem. 2006, 281 (21): 15013-15020. 10.1074/jbc.M511116200 Moreau A: A novel pregnane X receptor and S14-mediated lipogenic pathway in human hepatocyte. Hepatology. 2009, 49 (6): 2068-2079. 10.1002/hep.22907 Wolfrum C, Asilmaz E, Luca E, Friedman JM, Stoffel M: Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Nature. 2004, 432 (7020): 1027-1032. 10.1038/nature03047 Nakamura K, Moore R, Negishi M, Sueyoshi T: Nuclear pregnane X receptor cross-talk with FoxA2 to mediate drug-induced regulation of lipid metabolism in fasting mouse liver. J Biol Chem. 2007, 282 (13): 9768-9776. 10.1074/jbc.M610072200 Valenti L: Increased expression and activity of the transcription factor FOXO1 in nonalcoholic steatohepatitis. Diabetes. 2008, 57 (5): 1355-1362. 10.2337/db07-0714 Kodama S, Koike C, Negishi M, Yamamoto Y: Nuclear receptors CAR and PXR cross talk with FOXO1 to regulate genes that encode drug-metabolizing and gluconeogenic enzymes. Mol Cell Biol. 2004, 24 (18): 7931-7940. 10.1128/MCB.24.18.7931-7940.2004 Parks DJ: Bile acids: natural ligands for an orphan nuclear receptor. Science. 1999, 284 (5418): 1365-1368. 10.1126/science.284.5418.1365 Downes M: A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR. Mol Cell. 2003, 11 (4): 1079-1092. 10.1016/S1097-2765(03)00104-7 Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K: Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov. 2008, 7 (8): 678-693. 10.1038/nrd2619 Musso G, Gambino R, Cassader M: Emerging molecular targets for the treatment of nonalcoholic fatty liver disease. Annu Rev Med. 2010, 61: 375-392. 10.1146/annurev.med.60.101107.134820 Sinal CJ: Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell. 2000, 102 (6): 731-744. 10.1016/S0092-8674(00)00062-3 Kong B, Luyendyk JP, Tawfik O, Guo GL: Farnesoid X receptor deficiency induces nonalcoholic steatohepatitis in low-density lipoprotein receptor-knockout mice fed a high-fat diet. J Pharmacol Exp Ther. 2009, 328 (1): 116-122. 10.1124/jpet.108.144600 Zhang Y, Castellani LW, Sinal CJ, Gonzalez FJ, Edwards PA: Peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes Dev. 2004, 18 (2): 157-169. 10.1101/gad.1138104 Claudel T: Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression. Gastroenterology. 2003, 125 (2): 544-555. 10.1016/S0016-5085(03)00896-5 Yamagata K: Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1. J Biol Chem. 2004, 279 (22): 23158-23165. 10.1074/jbc.M314322200 Ma K, Saha PK, Chan L, Moore DD: Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest. 2006, 116 (4): 1102-1109. 10.1172/JCI25604 Inagaki T: Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci USA. 2006, 103 (10): 3920-3925. 10.1073/pnas.0509592103 Chakravarthy MV: Identification of a physiologically relevant endogenous ligand for Pplpha in liver. Cell. 2009, 138 (3): 476-488. 10.1016/j.cell.2009.05.036 Okamura M, Inagaki T, Tanaka T, Sakai J: Role of histone methylation and demethylation in adipogenesis and obesity. Organogenesis. 2010, 6 (1): 24-32. 10.4161/org.6.1.11121 Nissen SE, Wolski K: Rosiglitazone revisited: an updated meta-analysis of risk for myocardial infarction and cardiovascular mortality. Arch Intern Med. 2010, 170 (14): 1191-1201. Dongiovanni P, Valenti L: Peroxisome proliferator-activated receptor genetic polymorphisms and nonalcoholic Fatty liver disease: any role in disease susceptibility?. PPAR Research. 2013, 2013: 452061- Sahebkar A: Does PPARgamma2 gene Pro12Ala polymorphism affect nonalcoholic fatty liver disease risk? Evidence from a meta-analysis. DNA Cell Biol. 2013, 32 (4): 188-198. 10.1089/dna.2012.1947 Wang J: Association between the Pro12Ala polymorphism of PPAR-gamma gene and the non-alcoholic fatty liver disease: a meta-analysis. Gene. 2013, 528 (2): 328-334. 10.1016/j.gene.2013.07.014 Lazarow PB, Fujiki Y: Biogenesis of peroxisomes. Annu Rev Cell Biol. 1985, 1: 489-530. 10.1146/annurev.cb.01.110185.002421 Wanders RJ, Tager JM: Lipid metabolism in peroxisomes in relation to human disease. Mol Aspects Med. 1998, 19 (2): 69-154. Wanders RJ, Waterham HR: Biochemistry of mammalian peroxisomes revisited. Annu Rev Biochem. 2006, 75: 295-332. 10.1146/annurev.biochem.74.082803.133329 Abe I, Okumoto K, Tamura S, Fujiki Y: Clofibrate-inducible, 28-kDa peroxisomal integral membrane protein is encoded by PEX11. FEBS Lett. 1998, 431 (3): 468-472. 10.1016/S0014-5793(98)00815-1 Delille HK: Pex11pbeta-mediated growth and division of mammalian peroxisomes follows a maturation pathway. J Cell Sci. 2010, 123 (Pt 16): 2750-2762. Koch J: PEX11 family members are membrane elongation factors that coordinate peroxisome proliferation and maintenance. J Cell Sci. 2010, 123 (Pt 19): 3389-3400. Marshall PA: Pmp27 promotes peroxisomal proliferation. J Cell Biol. 1995, 129 (2): 345-355. 10.1083/jcb.129.2.345 Schrader M: Expression of PEX11beta mediates peroxisome proliferation in the absence of extracellular stimuli. J Biol Chem. 1998, 273 (45): 29607-29614. 10.1074/jbc.273.45.29607 Li X: PEX11alpha is required for peroxisome proliferation in response to 4-phenylbutyrate but is dispensable for peroxisome proliferator-activated receptor alpha-mediated peroxisome proliferation. Mol Cell Biol. 2002, 22 (23): 8226-8240. 10.1128/MCB.22.23.8226-8240.2002 Weng H: Pex11alpha deficiency impairs peroxisome elongation and division and contributes to nonalcoholic fatty liver in mice. Am J Physiol Endocrinol Metab. 2013, 304 (2): E187-E196. 10.1152/ajpendo.00425.2012 Ma W, Sung HJ, Park JY, Matoba S, Hwang PM: A pivotal role for p53: balancing aerobic respiration and glycolysis. J Bioenerg Biomembr. 2007, 39 (3): 243-246. 10.1007/s10863-007-9083-0 Yahagi N: p53 involvement in the pathogenesis of fatty liver disease. J Biol Chem. 2004, 279 (20): 20571-20575. 10.1074/jbc.M400884200 Farrell GC: Apoptosis in experimental NASH is associated with p53 activation and TRAIL receptor expression. J Gastroenterol Hepatol. 2009, 24 (3): 443-452. 10.1111/j.1440-1746.2009.05785.x Derdak Z: Inhibition of p53 attenuates steatosis and liver injury in a mouse model of non-alcoholic fatty liver disease. J Hepatol. 2013, 58 (4): 785-791. 10.1016/j.jhep.2012.11.042 Castro RE: miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease. J Hepatol. 2013, 58 (1): 119-125. 10.1016/j.jhep.2012.08.008 Pommier AJ: Liver x receptors protect from development of prostatic intra-epithelial neoplasia in mice. PLoS Genet. 2013, 9 (5): e1003483- 10.1371/journal.pgen.1003483 Zelcer N, Hong C, Boyadjian R, Tontonoz P: LXR Regulates Cholesterol Uptake Through Idol-Dependent Ubiquitination of the LDL Receptor. Science. 2009, 325 (5936): 100-104. 10.1126/science.1168974 Suckling K: Selective thyromimetics for atherosclerosis and dyslipidaemia: another old target making progress. Expert Opin Investig Drugs. 2008, 17 (5): 615-618. 10.1517/13543784.17.5.615 Berkenstam A: The thyroid hormone mimetic compound KB2115 lowers plasma LDL cholesterol and stimulates bile acid synthesis without cardiac effects in humans. Proc Natl Acad Sci USA. 2008, 105 (2): 663-667. 10.1073/pnas.0705286104 Cable EE: Reduction of hepatic steatosis in rats and mice after treatment with a liver-targeted thyroid hormone receptor agonist. Hepatology. 2009, 49 (2): 407-417. 10.1002/hep.22572 Grant N: The role of triiodothyronine-induced substrate cycles in the hepatic response to overnutrition: thyroid hormone as an antioxidant. Med Hypotheses. 2007, 68 (3): 641-649. 10.1016/j.mehy.2006.07.045 Hardie DG: AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev. 2011, 25 (18): 1895-1908. 10.1101/gad.17420111 Barnes K: Activation of GLUT1 by metabolic and osmotic stress: potential involvement of AMP-activated protein kinase (AMPK). J Cell Sci. 2002, 115 (Pt 11): 2433-2442. Marsin AS: Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Current Biology : CB. 2000, 10 (20): 1247-1255. 10.1016/S0960-9822(00)00742-9 Mihaylova MM: Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell. 2011, 145 (4): 607-621. 10.1016/j.cell.2011.03.043 Jorgensen SB: The alpha2-5'AMP-activated protein kinase is a site 2 glycogen synthase kinase in skeletal muscle and is responsive to glucose loading. Diabetes. 2004, 53 (12): 3074-3081. 10.2337/diabetes.53.12.3074 Koo SH: The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature. 2005, 437 (7062): 1109-1111. 10.1038/nature03967 Foretz M: Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Diabetes. 2005, 54 (5): 1331-1339. 10.2337/diabetes.54.5.1331 Jager S, Handschin C, St-Pierre J, Spiegelman BM: AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA. 2007, 104 (29): 12017-12022. 10.1073/pnas.0705070104 Narkar VA: AMPK and PPARdelta agonists are exercise mimetics. Cell. 2008, 134 (3): 405-415. 10.1016/j.cell.2008.06.051 Jorgensen SB: Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle. FASEB J. 2005, 19 (9): 1146-1148. Zhang W: Thiazolidinediones improve hepatic fibrosis in rats with non-alcoholic steatohepatitis by activating the adenosine monophosphate-activated protein kinase signalling pathway. Clin Exp Pharmacol Physiol. 2012, 39 (12): 1026-1033. 10.1111/1440-1681.12020 Zhou G: Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001, 108 (8): 1167-1174. Zang M: AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. J Biol Chem. 2004, 279 (46): 47898-47905. 10.1074/jbc.M408149200 Garcia-Ruiz I, Solis-Munoz P, Fernandez-Moreira D, Munoz-Yague T, Solis-Herruzo JA: Pioglitazone leads to an inactivation and disassembly of complex I of the mitochondrial respiratory chain. BMC Biol. 2013, 11: 88- 10.1186/1741-7007-11-88 Divakaruni AS: Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier. Proc Natl Acad Sci USA. 2013, 110 (14): 5422-5427. 10.1073/pnas.1303360110 Baur JA: Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006, 444 (7117): 337-342. 10.1038/nature05354 Hwang JT: Apoptotic effect of EGCG in HT-29 colon cancer cells via AMPK signal pathway. Cancer Lett. 2007, 247 (1): 115-121. 10.1016/j.canlet.2006.03.030 Hou X: SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem. 2008, 283 (29): 20015-20026. 10.1074/jbc.M802187200 Collins QF: Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5'-AMP-activated protein kinase. J Biol Chem. 2007, 282 (41): 30143-30149. 10.1074/jbc.M702390200 Gledhill JR, Montgomery MG, Leslie AG, Walker JE: Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Proc Natl Acad Sci USA. 2007, 104 (34): 13632-13637. 10.1073/pnas.0706290104 Valenti D: Negative modulation of mitochondrial oxidative phosphorylation by epigallocatechin-3 gallate leads to growth arrest and apoptosis in human malignant pleural mesothelioma cells. Biochimica et Piophysica Acta. 2013, 1832 (12): 2085-2096. 10.1016/j.bbadis.2013.07.014. Bergeron R: Effect of 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside infusion on in vivo glucose and lipid metabolism in lean and obese Zucker rats. Diabetes. 2001, 50 (5): 1076-1082. 10.2337/diabetes.50.5.1076 Taylor EB: Discovery of TBC1D1 as an insulin-, AICAR-, and contraction-stimulated signaling nexus in mouse skeletal muscle. J Biol Chem. 2008, 283 (15): 9787-9796. 10.1074/jbc.M708839200 Mukhtar MH: Inhibition of glucokinase translocation by AMP-activated protein kinase is associated with phosphorylation of both GKRP and 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase. Am J Physiol Regul Integr Comp Physiol. 2008, 294 (3): R766-R774. 10.1152/ajpregu.00593.2007 Guigas B: AMP-activated protein kinase-independent inhibition of hepatic mitochondrial oxidative phosphorylation by AICA riboside. Biochem J. 2007, 404 (3): 499-507. 10.1042/BJ20070105 Sanders MJ, Grondin PO, Hegarty BD, Snowden MA, Carling D: Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem J. 2007, 403 (1): 139-148. 10.1042/BJ20061520 Guigas B: Beyond AICA riboside: in search of new specific AMP-activated protein kinase activators. IUBMB life. 2009, 61 (1): 18-26. 10.1002/iub.135 Song Z: Involvement of AMP-activated protein kinase in beneficial effects of betaine on high-sucrose diet-induced hepatic steatosis. Am J Physiol Gastrointest Liver Physiol. 2007, 293 (4): G894-G902. 10.1152/ajpgi.00133.2007 Lee WJ: Alpha-lipoic acid increases insulin sensitivity by activating AMPK in skeletal muscle. Biochem Biophys Res Commun. 2005, 332 (3): 885-891. 10.1016/j.bbrc.2005.05.035 Yi X, Pashaj A, Xia M, Moreau R: Reversal of obesity-induced hypertriglyceridemia by (R)-alpha-lipoic acid in ZDF (fa/fa) rats. Biochemical and biophysical research communications. 2013,http://www.ncbi.nlm.nih.gov/pubmed/?term=Reversal+of+obesity-induced+hypertriglyceridemia+by+(R)-alpha-lipoic+acid+in+ZDF+(fa%2Ffa)+rats, Yamauchi T: Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med. 2007, 13 (3): 332-339. 10.1038/nm1557 Andreelli F: Liver adenosine monophosphate-activated kinase-alpha2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin. Endocrinology. 2006, 147 (5): 2432-2441. 10.1210/en.2005-0898 Xu A: The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest. 2003, 112 (1): 91-100. McMahan RH: Bile acid receptor activation modulates hepatic monocyte activity and improves nonalcoholic fatty liver disease. J Biol Chem. 2013, 288 (17): 11761-11770. 10.1074/jbc.M112.446575 Bataille AM, Manautou JE: Nrf2: A Potential Target for New Therapeutics in Liver Disease. Clin Pharmacol Ther. 2012, 92 (3): 340-348. 10.1038/clpt.2012.110 Begriche K, Massart J, Robin MA, Bonnet F, Fromenty B: Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease. Hepatology. 2013, 58 (4): 1497-1507. 10.1002/hep.26226 Garcia-Ruiz C, Baulies A, Mari M, Garcia-Roves PM, Fernandez-Checa JC: Mitochondrial dysfunction in non-alcoholic fatty liver disease and insulin resistance: Cause or consequence?. Free Radic Res. 2013, 47 (11): 854-868. 10.3109/10715762.2013.830717 Koliaki C, Roden M: Hepatic energy metabolism in human diabetes mellitus, obesity and non-alcoholic fatty liver disease. l Cell Endocrinol. 2013, 379 (1–2): 35-42. Fabbrini E, Sullivan S, Klein S: Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology. 2010, 51 (2): 679-689. 10.1002/hep.23280 Tamura S, Shimomura I: Contribution of adipose tissue and de novo lipogenesis to nonalcoholic fatty liver disease. J Clin Invest. 2005, 115 (5): 1139-1142. Crescenzo R: Increased hepatic de novo lipogenesis and mitochondrial efficiency in a model of obesity induced by diets rich in fructose. Eur J Nutr. 2013, 52 (2): 537-545. 10.1007/s00394-012-0356-y Ciapaite J: Differential effects of short- and long-term high-fat diet feeding on hepatic fatty acid metabolism in rats. Biochim Biophys Acta. 2011, 1811 (7–8): 441-451. Dasarathy S: Elevated hepatic fatty acid oxidation, high plasma fibroblast growth factor 21, and fasting bile acids in nonalcoholic steatohepatitis. Eur J Gastroenterol Hepatol. 2011, 23 (5): 382-388. 10.1097/MEG.0b013e328345c8c7 Myers MG, Leibel RL, Seeley RJ, Schwartz MW: Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol Metab. 2010, 21 (11): 643-651. 10.1016/j.tem.2010.08.002 Dushay J: Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology. 2010, 139 (2): 456-463. 10.1053/j.gastro.2010.04.054 Li H: Fibroblast growth factor 21 levels are increased in nonalcoholic fatty liver disease patients and are correlated with hepatic triglyceride. J Hepatol. 2010, 53 (5): 934-940. 10.1016/j.jhep.2010.05.018 Matthews VB: Interleukin-6-deficient mice develop hepatic inflammation and systemic insulin resistance. Diabetologia. 2010, 53 (11): 2431-2441. 10.1007/s00125-010-1865-y Takamura T: Obesity upregulates genes involved in oxidative phosphorylation in livers of diabetic patients. Obesity. 2008, 16 (12): 2601-2609. 10.1038/oby.2008.419 Alves TC: Regulation of hepatic fat and glucose oxidation in rats with lipid-induced hepatic insulin resistance. Hepatology. 2011, 53 (4): 1175-1181. 10.1002/hep.24170 Esposito E: Probiotics reduce the inflammatory response induced by a high-fat diet in the liver of young rats. J Nutr. 2009, 139 (5): 905-911. 10.3945/jn.108.101808 Serviddio G: Alterations of hepatic ATP homeostasis and respiratory chain during development of non-alcoholic steatohepatitis in a rodent model. Eur J Clin Invest. 2008, 38 (4): 245-252. 10.1111/j.1365-2362.2008.01936.x Lazarin Mde O: Liver mitochondrial function and redox status in an experimental model of non-alcoholic fatty liver disease induced by monosodium L-glutamate in rats. Exp Mol Pathol. 2011, 91 (3): 687-694. 10.1016/j.yexmp.2011.07.003 Flamment M: Regulation of hepatic mitochondrial metabolism in response to a high fat diet: a longitudinal study in rats. J Physiol Biochem. 2012, 68 (3): 335-344. 10.1007/s13105-012-0145-3 Jiang Y, Zhang H, Dong LY, Wang D, An W: Increased hepatic UCP2 expression in rats with nonalcoholic steatohepatitis is associated with upregulation of Sp1 binding to its motif within the proximal promoter region. J Cell Biochem. 2008, 105 (1): 277-289. 10.1002/jcb.21827 Begriche K, Massart J, Robin MA, Borgne-Sanchez A, Fromenty B: Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver. J Hepatol. 2011, 54 (4): 773-794. 10.1016/j.jhep.2010.11.006 Mingorance C: Propionyl-L-carnitine corrects metabolic and cardiovascular alterations in diet-induced obese mice and improves liver respiratory chain activity. PloS one. 2012, 7 (3): e34268- 10.1371/journal.pone.0034268 Finocchietto PV: Defective leptin-AMP-dependent kinase pathway induces nitric oxide release and contributes to mitochondrial dysfunction and obesity in ob/ob mice. Antioxid Redox Signal. 2011, 15 (9): 2395-2406. 10.1089/ars.2010.3857 Pessayre D: Role of mitochondria in non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2007, 22 (Suppl 1): S20-S27. Mollica MP: 3, 5-diiodo-l-thyronine, by modulating mitochondrial functions, reverses hepatic fat accumulation in rats fed a high-fat diet. J Hepatol. 2009, 51 (2): 363-370. 10.1016/j.jhep.2009.03.023 Hancock CR: High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc Natl Acad Sci USA. 2008, 105 (22): 7815-7820. 10.1073/pnas.0802057105 Ramirez-Tortosa MC: Curcumin ameliorates rabbits's steatohepatitis via respiratory chain, oxidative stress, and TNF-alpha. Free Radic Biol Med. 2009, 47 (7): 924-931. 10.1016/j.freeradbiomed.2009.06.015 Serviddio G: A silybin-phospholipid complex prevents mitochondrial dysfunction in a rodent model of nonalcoholic steatohepatitis. J Pharmacol Exp Ther. 2010, 332 (3): 922-932. 10.1124/jpet.109.161612 Samuhasaneeto S, Thong-Ngam D, Kulaputana O, Patumraj S, Klaikeaw N: Effects of N-acetylcysteine on oxidative stress in rats with non-alcoholic steatohepatitis. J Med Assoc Thai. 2007, 90 (4): 788-797. Hezode C: Daily cannabis smoking as a risk factor for progression of fibrosis in chronic hepatitis C. Hepatology. 2005, 42 (1): 63-71. 10.1002/hep.20733 Munoz-Luque J: Regression of fibrosis after chronic stimulation of cannabinoid CB2 receptor in cirrhotic rats. J Pharmacol Exp Ther. 2008, 324 (2): 475-483. Teixeira-Clerc F: CB1 cannabinoid receptor antagonism: a new strategy for the treatment of liver fibrosis. Nat Med. 2006, 12 (6): 671-676. 10.1038/nm1421 Van Gaal L, Pi-Sunyer X, Despres JP, McCarthy C, Scheen A: Efficacy and safety of rimonabant for improvement of multiple cardiometabolic risk factors in overweight/obese patients: pooled 1-year data from the Rimonabant in Obesity (RIO) program. Diabetes Care. 2008, 31 (Suppl 2): S229-S240. Janero DR, Lindsley L, Vemuri VK, Makriyannis A: Cannabinoid 1 G protein-coupled receptor (periphero-)neutral antagonists: emerging therapeutics for treating obesity-driven metabolic disease and reducing cardiovascular risk. Expert Opinion on Drug Discovery. 2011, 6 (10): 995-1025. 10.1517/17460441.2011.608063