Solving the Giant Stars Problem: Theories of Stellar Evolution from The 1930s to The 1950s

Archive for History of Exact Sciences - Tập 64 - Trang 203-267 - 2009
Davide Cenadelli1
1Dipartimento di Fisica, Università degli Studi di Milano, Milano, Italy

Tóm tắt

Historiography has pointed out that the time between the mid 1910s and the early 1930s can be considered a pivotal period in the history of stellar astrophysics. In those years, scholars like Saha and Eddington first applied atomic physics to astrophysics. Theoretical astrophysics was born. This led to the development of the first physically sound models for stellar interiors and atmospheres. These landmark achievements spurred scholars to elaborate theories for stellar evolutions, and in the following decades several astrophysicists focused on this problem. The evolutionary role of red giants turned out to be the main issue. Those stars were initially assumed to be young ones going through the formation stage, but astrophysicists gradually realized that they were rather to be considered old, evolved stars. The solution of the giant stars issue required a couple of decades: it was not until the mid 1950s that a satisfactory explanation was obtained. This provides a detailed picture of the theories of stellar evolution from the 1930s to the 1950s and of the solution to the red giants problem, with special emphasis on how such a solution was made possible by a series of subsequent steps: the identification of changing chemical composition as a main evolutionary feature of a star, the inclusion of nuclear physics within the theoretical framework of stellar astrophysics, the recognition of the importance of inhomogeneities that settle within stars as nuclear processes go on.

Tài liệu tham khảo

Applegate J.H. (1988) Why stars become red giants. Astrophysical Journal 329: 803–807 Arny T. (1990) The star makers: a history of the theories of stellar structure and evolution. Vistas in Astronomy 33: 211–233 Arp H.C., Baum W.A., Sandage A.S. (1952) The HR diagrams for the globular clusters M 92 and M 3. Astronomical Journal 57: 4–5 Arp H.C., Baum W.A., Sandage A.S. (1953) The color-magnitude diagram of the globular cluster M 92. Astronomical Journal 58: 4–9 Atkinson R.d’E., Houtermans G. (1929) Zur Frage der Aufbaumöglichkeit der Elemente in Sterne. Zeitschrift für Physik 54: 656–665 Baade W. (1944) The resolution of Messier 32, NGC 205, and the central region of the Andromeda Nebula. Astrophysical Journal 100: 137–146 Beech M. (1988) The Schoenberg-Chandrasekhar limit: a polytropic approximation. Astrophysics and Space Science 147: 219–227 Celnikier L.M. (1990) A simple way to assess the structure of red giants. American Journal of Physics 58: 169–177 Celnikier L.M. (2006) Find a hotter place! A history of nuclear astrophysics. World Scientific Publishing, Singapore Cenadelli D. (2008) The hydrogen abundance in stars: a first major step for quantitative astrophysics. Journal of Astronomical History and Heritage 11: 134–145 Chandrasekhar S. (1939) An introduction to the study of stellar structure. University of Chicago Press, Chicago Collins G.W. II. (1989) The fundamentals of stellar astrophysics. W H Freeman & Co, New York Cowling T.G. (1930) On a point-source model of a star. Monthly Notices of the Royal Astronomical Society 91: 92–108 Cowling T.G. (1931) Note on the fitting of polytropic models in the theory of stellar structure. Monthly Notices of the Royal Astronomical Society 91: 472–478 Cowling T.G. (1934) The stability of gaseous stars. Monthly Notices of the Royal Astronomical Society 94: 768–782 Cowling T.G. (1935a) The stability of gaseous stars (Second paper). Monthly Notices of the Royal Astronomical Society 96: 42–60 Cowling T.G. (1935b) Convection in stars. Observatory 58: 243–247 Cowling T.G. (1966) The development of the theory of stellar structure. Quarterly Journal of the Royal Astronomical Society 7: 121–137 Critchfiled C.L., Gamow G. (1939) The shell-source stellar model. Astrophysical Journal 89: 244–254 DeVorkin D.H., Kenat R. (1983a) Quantum physics and the stars (I): the establishment of a stellar temperature scale. Journal for the History of Astronomy 14: 102–132 DeVorkin D.H., Kenat R. (1983b) Quantum physics and the stars (II): Henry Norris Russell and the abundances of the elements in the atmospheres of the Sun and stars. Journal for the History of Astronomy 14: 180–222 Dingle H. (1963) A hundred years of spectroscopy. The British Journal for the History of Science 1: 199–216 Eddington A.S. (1916) On the radiative equilibrium of the stars. Monthly Notices of the Royal Astronomical Society 77: 16–35 Eddington A.S. (1917) Further notes on the radiative equilibrium of the stars. Monthly Notices of the Royal Astronomical Society 77: 596–612 Eddington A.S. (1924a) The absorption of radiation inside a star. Monthly Notices of the Royal Astronomical Society 84: 104–123 Eddington A.S. (1924b) On the relation between the masses and luminosities of the stars. Monthly Notices of the Royal Astronomical Society 84: 308–332 Eddington A.S. (1927) Stars and atoms. Oxford University Press, Oxford Eddington A.S. (1932) The hydrogen content of the stars. Monthly Notices of the Royal Astronomical Society 92: 471–481 Eddington A.S. (1938) Star models with variable polytropic index. Monthly Notices of the Royal Astronomical Society 99: 4–13 Eggleton P.P., Faulkner J., Cannon R.C. (1998) A small contribution to the giant problem. Monthly Notices of the Royal Astronomical Society 298: 831–834 Faulkner, J. 1997. Why stars don’t become red giants—and why they DO! Advances in Stellar Evolution, Proceedings of the Workshop Stellar Ecology, held in Marciana Marina, Elba, Italy, 23–29 June 1996, 9–10. Gamow G. (1938a) Nuclear energy sources and stellar evolution. Physical Review 53: 595–604 Gamow G. (1938b) A star model with selective thermo-nuclear source. Astrophysical Journal 87: 206–208 Gamow G. (1938c) Tracks of stellar evolution. Physical Review 53: 907–908 Gamow G. (1939a) The energy-producing reaction in the Sun. Astrophysical Journal 89: 130–133 Gamow G. (1939b) Physical possibilities of stellar evolution. Physical Review 55: 718–725 Gamow G. (1939c) Nuclear reactions in stellar evolution. Nature 144: 575–577 Gamow G. (1944) The evolution of contracting stars. Physical Review 65: 20–32 Gamow G. (1945) The red-giant stage of stellar evolution. Physical Review 67: 120–121 Gamow G., Keller G. (1945) A shell source model for red giant stars. Reviews of Modern Physics 17: 125–137 Gamow G., Teller E. (1939) Energy production in red giants. Physical Review 55: 791 Gardiner J.G. (1951) A model of a red giant star. Monthly Notices of the Royal Astronomical Society 111: 102–110 Gingerich, O., Lang, K. (eds) (1979) A source book in astronomy and astrophysics. Harvard University Press, Cambridge, pp 1900–1975 Goldberg L. (1988) Atomic spectroscopy and astrophysics. Physics Today 41: 38–45 Hall Harrison M. (1944) The generalized Cowling Model. Astrophysical Journal 100: 343–346 Hall Harrison M. (1946) Stellar models with partially degenerate isothermal cores and point-source envelopes. Astrophysical Journal 103: 193–206 Härm R., Schwarzschild M. (1955) Inhomogeneous stellar models. IV. Models with continuously varying chemical composition. Astrophysical Journal 121: 445–453 Hearnshaw J.B. (1986) The analysis of starlight: one hundred and fifty years of astronomical spectroscopy. Cambridge University Press, Cambridge Hen L., Schwarzschild M. (1949) Red-giant models with chemical inhomogeneities. Monthly Notices of the Royal Astronomical Society 109: 631–646 Henrich L.R., Chandrasekhar S. (1941) Stellar models with isothermal cores. Astrophysical Journal 94: 525–536 Henyey L.G., Lelevier R., Levée R.D. (1955a) The early phases of stellar evolution. Publications of the Astronomical Society of the Pacific 67: 154–160 Henyey L.G., Lelevier R., Levée R.D. (1955b) Evolution of Sirius. Publications of the Astronomical Society of the Pacific 67: 341–342 Herrmann D.B. (1984) The history of astronomy from Herschel to Hertzsprung. Cambridge University Press, Cambridge Hoskin, M. (eds) (1999) The Cambridge concise history of astronomy. Cambridge University Press, Cambridge Hoyle F. (1954) On nuclear reactions occuring in very hot stars. I. The synthesis of elements from carbon to nickel. Astrophysical Journal Supplement 1: 121–146 Hoyle F., Lyttleton R.A. (1942a) On the internal constitution of the stars. Monthly Notices of the Royal Astronomical Society 102: 177–193 Hoyle F., Lyttleton R.A. (1942b) On the nature of red giant stars. Monthly Notices of the Royal Astronomical Society 102: 218–225 Hoyle F., Lyttleton R.A. (1946) Note on stellar structure. Monthly Notices of the Royal Astronomical Society 106: 525–530 Hoyle F., Lyttleton R.A. (1949) The structure of stars of non-uniform composition. Monthly Notices of the Royal Astronomical Society 109: 614–630 Hoyle F., Schwarzschild M. (1955) On the evolution of type II stars. Astrophysical Journal Supplement 2: 1–40 Hufbauer K. (2006) Stellar structure and evolution, 1924–39. Journal for the History of Astronomy 37: 203–227 Kippenhahn R., Weigert A. (1990) Stellar structure and evolution. Springer, Berlin-Heidelberg Kuiper G.P. (1937) On the hydrogen content of clusters. Astrophysical Journal 86: 176–197 Leverington D. (1995) A history of astronomy from 1890 to the present. Springer, London Longair M.S. (2007) The cosmic century: a history of astrophysics and cosmology. Cambridge University Press, Cambridge Masani A. (1984) Astrofisica. Editori Riuniti, Roma Meadows J. (1984) The origins of astrophysics. American Scientist 72: 269–274 Menzel D.H. (1972) The history of astronomical spectroscopy I: qualitative chemical analysis and radial velocities and The history of astronomical spectroscopy II: quantitative chemical analysis and the structure of the solar atmosphere. Annals of the New York Academy of Sciences 198: 225–244 Mestel L. (2004) Arthur Stanley Eddington: pioneer of stellar structure theory. Journal of Astronomical History and Heritage 7: 65–73 Milne E.A. (1930) The analysis of stellar structure. Monthly Notices of the Royal Astronomical Society 91: 4–55 Oke J.B., Schwarzschild M. (1952) Inhomogeneous stellar models. I. Models with a convective core and a discontinuity in the chemical composition. Astrophysical Journal 116: 317–330 Öpik E. (1939) Stellar structure, source of energy, and evolution. Publications de l’Observatoire Astronomique de l’Universite’ de Tartu 30: 1–115 Osterbrock D.E. (1953) The internal structure of red dwarf stars. Astrophysical Journal 118: 529–546 Payne, C.H. 1925. Stellar atmospheres; a contribution to the observational study of high temperature in the reversing layers of stars. Harvard Observatory Monographs, no. 1. Cambridge. Prialnik D. (2000) An introduction to the theory of stellar structure and evolution. Cambridge Univerity Press, Cambridge Rebsdorf S.O. (2007) Bengt Strömgren: interstellar glow, helium content, and solar life supply, 1932–1940. Centaurus 49: 56–79 Renzini A., Greggio L., Ritossa C., Ferrario L. (1992) Why stars inflate to and deflate from red giant dimensions. Astrophysical Journal 400: 280–303 Richardson R.S., Schwarzschild M. (1948) A stellar model for red giants of high central temperature. Astrophysical Journal 108: 373–387 Russell, H.N. 1914. Relations between the spectra and other characteristics of the stars. Nature 93, 227–231, 252–258 and 281–286. Russell H.N. (1925) The problem of stellar evolution. Nature 116: 209–212 Russell H.N. (1929) On the composition of the Sun’s atmosphere. Astrophysical Journal 70: 11–82 Salpeter E.E. (1952) Nuclear reactions in stars without hydrogen. Astrophysical Journal 115: 326–328 Sandage, A.R. 1954. A survey of present knowledge of globular clusters and its significance for stellar evolution. Les Processus Nucléaires dans les Astres, Communications présentées au cinquième Colloque International d’Astrophysique tenu à Liège les 10–12 Septembre, 1953, 254–274. Sandage A.R., Schwarzschild M. (1952) Inhomogeneous stellar models. II. Models with exhausted cores in gravitational contraction. Astrophysical Journal 116: 463–476 Schönberg M., Chandrasekhar S. (1942) On the evolution of the main-sequence star. Astrophysical Journal 96: 161–172 Schwarzschild M., Rabinowitz I., Härm R. (1953) Inhomogeneous stellar models. III. Models with partially degenerate isothermal cores. Astrophysical Journal 118: 326–334 Sitterly B.W. (1970) Changing interpretations of the Hertzsprung-Russell Diagram, 1910–1940: a historical note. Vistas in Astronomy 12: 357–366 Smith R.C. (1995) Observational astrophysics. Cambridge University Press, Cambridge Srinivasan G. (1996) Stars: their structure and evolution. Journal of Astrophysics and Astronomy 17: 53–76 Strömgren B. (1931a) The possible solutions of the “equations of fit” on the Standard Model. Monthly Notices of the Royal Astronomical Society 91: 466–472 Strömgren B. (1931b) The point-source model with coefficient of opacity k = k 1 ρT −3.5. Zeitschrift für Astrophysik 2: 345–369 Strömgren B. (1932) The opacity of stellar matter and the hydrogen content of the stars. Zeitschrift für Astrophysik 4: 118–152 Strömgren B. (1933) On the interpretation of the Hertzsprung-Russell-Diagram. Zeitschrift für Astrophysik 7: 222–248 Strömgren B. (1938) On the helium and hydrogen content of the interior of the stars. Astrophysical Journal 87: 520–534 Strömgren B. (1972) The rise of astrophysics. Annals of the New York Academy of Sciences 198: 245–254 Tassoul J.-L., Tassoul M. (2004) A concise history of solar and stellar physics. Princeton University Press, Princeton Tayler R.J. (1954) Evolution of massive stars. Astrophysical Journal 120: 332–341 Trumpler R.J. (1925) Spectral types in open clusters. Publications of the Astronomical Society of the Pacific 37: 307–318 Wares G.W. (1944) Partially degenerate stellar models. Astrophysical Journal 100: 158–175 Whitworth A.P. (1989) Why red giants are giant. Monthly Notices of the Royal Astronomical Society 236: 505–544 Yahil A., van der Horn L. (1985) Why do giants puff up? Astrophysical Journal 296: 554–564