Myeloid cells in tumor inflammation
Tóm tắt
Bone marrow derived myeloid cells progressively accumulate in tumors, where they establish an inflammatory microenvironment that is favorable for tumor growth and spread. These cells are comprised primarily of monocytic and granulocytic myeloid derived suppressor cells (MDSCs) or tumor-associated macrophages (TAMs), which are generally associated with a poor clinical outcome. MDSCs and TAMs promote tumor progression by stimulating immunosuppression, neovascularization, metastasis and resistance to anti-cancer therapy. Strategies to target the tumor-promoting functions of myeloid cells could provide substantial therapeutic benefit to cancer patients.
Tài liệu tham khảo
Biswas SK, Mantovani A: Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010, 11 (10): 889-896. 10.1038/ni.1937.
Grivennikov SI, Greten FR, Karin M: Immunity, inflammation, and cancer. Cell. 2010, 140 (6): 883-899. 10.1016/j.cell.2010.01.025.
Murray PJ, Wynn TA: Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011, 11 (11): 723-737. 10.1038/nri3073.
Wynn TA, Barron L: Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis. 2010, 30 (3): 245-257. 10.1055/s-0030-1255354.
Mantovani A, et al: Cancer-related inflammation. Nature. 2008, 454 (7203): 436-444. 10.1038/nature07205.
Mantovani A, Sica A: Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 2010, 22 (2): 231-237. 10.1016/j.coi.2010.01.009.
Hanahan D, Coussens LM: Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012, 21 (3): 309-322. 10.1016/j.ccr.2012.02.022.
Gabrilovich DI, Ostrand-Rosenberg S, Bronte V: Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012, 12 (4): 253-268. 10.1038/nri3175.
Geissmann F, et al: Development of monocytes, macrophages, and dendritic cells. Science. 2010, 327 (5966): 656-661. 10.1126/science.1178331.
Karp CL, Murray PJ: Non-canonical alternatives: what a macrophage is 4. J Exp Med. 2012, 209 (3): 427-431. 10.1084/jem.20120295.
Gordon S, Martinez FO: Alternative activation of macrophages: mechanism and functions. Immunity. 2010, 32 (5): 593-604. 10.1016/j.immuni.2010.05.007.
Greten FR, et al: IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell. 2004, 118 (3): 285-296. 10.1016/j.cell.2004.07.013.
Karin M, Greten FR: NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 2005, 5 (10): 749-759. 10.1038/nri1703.
Lin EY, et al: Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 2006, 66 (23): 11238-11246. 10.1158/0008-5472.CAN-06-1278.
Qian B, et al: A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One. 2009, 4 (8): e6562-10.1371/journal.pone.0006562.
Ruffell B, Affara NI, Coussens LM: Differential macrophage programming in the tumor microenvironment. Trends Immunol. 2012, 33 (3): 119-126. 10.1016/j.it.2011.12.001.
Qian BZ, Pollard JW: Macrophage diversity enhances tumor progression and metastasis. Cell. 2010, 141 (1): 39-51. 10.1016/j.cell.2010.03.014.
Rolny C, et al: HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell. 2011, 19 (1): 31-44. 10.1016/j.ccr.2010.11.009.
Peranzoni E, et al: Myeloid-derived suppressor cell heterogeneity and subset definition. Curr Opin Immunol. 2010, 22 (2): 238-244. 10.1016/j.coi.2010.01.021.
Bronte V, et al: Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood. 2000, 96 (12): 3838-3846.
Mandruzzato S, et al: IL4Ralpha + myeloid-derived suppressor cell expansion in cancer patients. J Immunol. 2009, 182 (10): 6562-6568. 10.4049/jimmunol.0803831.
Corzo CA, et al: HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med. 2010, 207 (11): 2439-2453. 10.1084/jem.20100587.
Corzo CA, et al: Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol. 2009, 182 (9): 5693-5701. 10.4049/jimmunol.0900092.
Diaz-Montero CM, et al: Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother. 2009, 58 (1): 49-59. 10.1007/s00262-008-0523-4.
Movahedi K, et al: Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood. 2008, 111 (8): 4233-4244. 10.1182/blood-2007-07-099226.
Yang R, et al: CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1 + CD11b + myeloid cells. Cancer Res. 2006, 66 (13): 6807-6815. 10.1158/0008-5472.CAN-05-3755.
Gallina G, et al: Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest. 2006, 116 (10): 2777-2790. 10.1172/JCI28828.
Sawanobori Y, et al: Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood. 2008, 111 (12): 5457-5466. 10.1182/blood-2008-01-136895.
Youn JI, et al: Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol. 2008, 181 (8): 5791-5802.
Haile LA, et al: CD49d is a new marker for distinct myeloid-derived suppressor cell subpopulations in mice. J Immunol. 2010, 185 (1): 203-210. 10.4049/jimmunol.0903573.
Van Ginderachter JA, et al: Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands reverse CTL suppression by alternatively activated (M2) macrophages in cancer. Blood. 2006, 108 (2): 525-535. 10.1182/blood-2005-09-3777.
Almand B, et al: Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol. 2001, 166 (1): 678-689.
Ochoa AC, et al: Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res. 2007, 13 (2 Pt 2): 721s-726s.
Filipazzi P, et al: Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol. 2007, 25 (18): 2546-2553. 10.1200/JCO.2006.08.5829.
Hoechst B, et al: A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology. 2008, 135 (1): 234-243. 10.1053/j.gastro.2008.03.020.
Vuk-Pavlovic S, et al: Immunosuppressive CD14 + HLA-DRlow/- monocytes in prostate cancer. Prostate. 2010, 70 (4): 443-455.
Solito S, et al: A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood. 2011, 118 (8): 2254-2265. 10.1182/blood-2010-12-325753.
Luster AD, Alon R, von Andrian UH: Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol. 2005, 6 (12): 1182-1190. 10.1038/ni1275.
Weber C, Koenen RR: Fine-tuning leukocyte responses: towards a chemokine’interactome’. Trends Immunol. 2006, 27 (6): 268-273. 10.1016/j.it.2006.04.002.
Du R, et al: HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell. 2008, 13 (3): 206-220. 10.1016/j.ccr.2008.01.034.
Nakasone ES, et al: Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell. 2012, 21 (4): 488-503. 10.1016/j.ccr.2012.02.017.
Schmid MC, et al: Combined blockade of integrin-alpha4beta1 plus cytokines SDF-1alpha or IL-1beta potently inhibits tumor inflammation and growth. Cancer Res. 2011, 71 (22): 6965-6975. 10.1158/0008-5472.CAN-11-0588.
Yang L, et al: Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1 + CD11b + myeloid cells that promote metastasis. Cancer Cell. 2008, 13 (1): 23-35. 10.1016/j.ccr.2007.12.004.
Wang XQ, et al: The high level of RANTES in the ectopic milieu recruits macrophages and induces their tolerance in progression of endometriosis. J Mol Endocrinol. 2010, 45 (5): 291-299. 10.1677/JME-09-0177.
Shojaei F, et al: G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc Natl Acad Sci U S A. 2009, 106 (16): 6742-6747. 10.1073/pnas.0902280106.
Shojaei F, et al: Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature. 2007, 450 (7171): 825-831. 10.1038/nature06348.
Denardo DG, et al: Leukocyte Complexity Predicts Breast Cancer Survival and Functionally Regulates Response to Chemotherapy. Cancer Discov. 2011, 1: 54-67. 10.1158/2159-8274.CD-10-0028.
Shimizu Y, Rose DM, Ginsberg MH: Integrins in the immune system. Adv Immunol. 1999, 72: 325-380.
Shattil SJ, Kim C, Ginsberg MH: The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol. 2010, 11 (4): 288-300. 10.1038/nrm2871.
Ley K, et al: Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007, 7 (9): 678-689. 10.1038/nri2156.
Schmid MC, et al: Receptor tyrosine kinases and TLR/IL1Rs unexpectedly activate myeloid cell PI3kgamma, a single convergent point promoting tumor inflammation and progression. Cancer Cell. 2011, 19 (6): 715-727. 10.1016/j.ccr.2011.04.016.
Avraamides CJ, Garmy-Susini B, Varner JA: Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer. 2008, 8 (8): 604-617. 10.1038/nrc2353.
Desgrosellier JS, Cheresh DA: Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010, 10 (1): 9-22. 10.1038/nrc2748.
Foubert P, Varner JA: Integrins in tumor angiogenesis and lymphangiogenesis. Methods Mol Biol. 2012, 757: 471-486.
Jin H, et al: Integrin alpha4beta1 promotes monocyte trafficking and angiogenesis in tumors. Cancer Res. 2006, 66 (4): 2146-2152. 10.1158/0008-5472.CAN-05-2704.
Luque A, et al: Activated conformations of very late activation integrins detected by a group of antibodies (HUTS) specific for a novel regulatory region (355–425) of the common beta 1 chain. J Biol Chem. 1996, 271 (19): 11067-11075. 10.1074/jbc.271.19.11067.
Arnaout MA, Mahalingam B, Xiong JP: Integrin structure, allostery, and bidirectional signaling. Annu Rev Cell Dev Biol. 2005, 21: 381-410. 10.1146/annurev.cellbio.21.090704.151217.
Ye F, et al: Recreation of the terminal events in physiological integrin activation. J Cell Biol. 2010, 188 (1): 157-173. 10.1083/jcb.200908045.
Ye F, Kim C, Ginsberg MH: Reconstruction of integrin activation. Blood. 2012, 119 (1): 26-33. 10.1182/blood-2011-04-292128.
Feral CC, et al: Blocking the alpha 4 integrin-paxillin interaction selectively impairs mononuclear leukocyte recruitment to an inflammatory site. J Clin Invest. 2006, 116 (3): 715-723. 10.1172/JCI26091.
Manevich E, et al: Talin 1 and paxillin facilitate distinct steps in rapid VLA-4-mediated adhesion strengthening to vascular cell adhesion molecule 1. J Biol Chem. 2007, 282 (35): 25338-25348. 10.1074/jbc.M700089200.
Lewis JS, et al: Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J Pathol. 2000, 192 (2): 150-158. 10.1002/1096-9896(2000)9999:9999<::AID-PATH687>3.0.CO;2-G.
Sunderkotter C, et al: Macrophages and angiogenesis. J Leukoc Biol. 1994, 55 (3): 410-422.
Giraudo E, Inoue M, Hanahan D: An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest. 2004, 114 (5): 623-633.
Hildenbrand R, et al: Urokinase and macrophages in tumour angiogenesis. Br J Cancer. 1995, 72 (4): 818-823. 10.1038/bjc.1995.419.
Esposito I, et al: Inflammatory cells contribute to the generation of an angiogenic phenotype in pancreatic ductal adenocarcinoma. J Clin Pathol. 2004, 57 (6): 630-636. 10.1136/jcp.2003.014498.
Huang S, et al: Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice. J Natl Cancer Inst. 2002, 94 (15): 1134-1142. 10.1093/jnci/94.15.1134.
Ostrand-Rosenberg S, Sinha P: Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol. 2009, 182 (8): 4499-4506. 10.4049/jimmunol.0802740.
Munder M: Arginase: an emerging key player in the mammalian immune system. Br J Pharmacol. 2009, 158 (3): 638-651. 10.1111/j.1476-5381.2009.00291.x.
Rodriguez PC, et al: L-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes. J Immunol. 2003, 171 (3): 1232-1239.
Nagaraj S, et al: Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med. 2007, 13 (7): 828-835. 10.1038/nm1609.
Sauer H, Wartenberg M, Hescheler J: Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem. 2001, 11 (4): 173-186. 10.1159/000047804.
Fichtner-Feigl S, et al: Restoration of tumor immunosurveillance via targeting of interleukin-13 receptor-alpha 2. Cancer Res. 2008, 68 (9): 3467-3475. 10.1158/0008-5472.CAN-07-5301.
Terabe M, et al: Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med. 2003, 198 (11): 1741-1752. 10.1084/jem.20022227.
Shojaei F, et al: Tumor refractoriness to anti-VEGF treatment is mediated by CD11b + Gr1+ myeloid cells. Nat Biotechnol. 2007, 25 (8): 911-920. 10.1038/nbt1323.
Qu X, et al: Induction of Bv8 expression by granulocyte-colony stimulating factor in CD11b + Gr1+ cells: Key role of Stat3 signaling. J Biol Chem. 2012, 287 (23): 19574-19584. 10.1074/jbc.M111.326801.
Shojaei F, et al: Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proc Natl Acad Sci U S A. 2008, 105 (7): 2640-2645. 10.1073/pnas.0712185105.
Jain RK: Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005, 307 (5706): 58-62. 10.1126/science.1104819.
Mazzieri R, et al: Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell. 2011, 19 (4): 512-526. 10.1016/j.ccr.2011.02.005.
Stockmann C, et al: Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature. 2008, 456 (7223): 814-818. 10.1038/nature07445.
Shree T, et al: Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev. 2011, 25 (23): 2465-2479. 10.1101/gad.180331.111.
Squadrito ML, et al: miR-511-3p Modulates Gentic Programs of Tumor-Associated Macrophages. Cell Reports. 2012, 1: 141-154. 10.1016/j.celrep.2011.12.005.
DeNardo DG, et al: CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell. 2009, 16 (2): 91-102. 10.1016/j.ccr.2009.06.018.