Coalignment of plasma membrane channels and protrusions (fibripositors) specifies the parallelism of tendon

Journal of Cell Biology - Tập 165 Số 4 - Trang 553-563 - 2004
Elizabeth G. Canty1, Yinhui Lu1, Roger S. Meadows1, Michael K. Shaw1, David Holmes1, Karl E. Kadler1
1Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK

Tóm tắt

The functional properties of tendon require an extracellular matrix (ECM) rich in elongated collagen fibrils in parallel register. We sought to understand how embryonic fibroblasts elaborate this exquisite arrangement of fibrils. We show that procollagen processing and collagen fibrillogenesis are initiated in Golgi to plasma membrane carriers (GPCs). These carriers and their cargo of 28-nm-diam fibrils are targeted to previously unidentified plasma membrane (PM) protrusions (here designated “fibripositors”) that are parallel to the tendon axis and project into parallel channels between cells. The base of the fibripositor lumen (buried several microns within the cell) is a nucleation site of collagen fibrillogenesis. The tip of the fibripositor is the site of fibril deposition to the ECM. Fibripositors are absent at postnatal stages when fibrils increase in diameter by accretion of extracellular collagen, thereby maintaining parallelism of the tendon. Thus, we show that the parallelism of tendon is determined by the late secretory pathway and interaction of adjacent PMs to form extracellular channels.

Từ khóa


Tài liệu tham khảo

1984, J. Cell Biol., 99, 2024, 10.1083/jcb.99.6.2024

1986, J. Cell Biol., 103, 231, 10.1083/jcb.103.1.231

1998, Cell., 95, 993, 10.1016/S0092-8674(00)81723-7

2003, J. Biol. Chem., 278, 31067, 10.1074/jbc.M212889200

1997, Proc. Natl. Acad. Sci. USA., 94, 2374, 10.1073/pnas.94.6.2374

2002, J. Biol. Chem., 277, 5756, 10.1074/jbc.M105601200

2001, J. Biol. Chem., 276, 31502, 10.1074/jbc.M103466200

2000, J. Mol. Biol., 295, 891, 10.1006/jmbi.1999.3384

1986, Science., 234, 438, 10.1126/science.2945253

2003, J. Biol. Chem., 278, 18045, 10.1074/jbc.M211448200

1992, Neuroimage., 1, 55, 10.1016/1053-8119(92)90007-A

1998, J. Cell Biol., 143, 1485, 10.1083/jcb.143.6.1485

1985, J. Biol. Chem., 260, 15996, 10.1016/S0021-9258(17)36357-3

1979, Biochem. Biophys. Res. Commun., 87, 993, 10.1016/S0006-291X(79)80005-4

1971, FEBS Lett., 17, 245, 10.1016/0014-5793(71)80156-4

1987, J. Biol. Chem., 262, 15696, 10.1016/S0021-9258(18)47783-6

1990, Biochem. J., 268, 339, 10.1042/bj2680339

1996, Biochem. J., 316(Pt 1), 1

1973, Proc. Natl. Acad. Sci. USA., 70, 1378, 10.1073/pnas.70.5.1378

1996, J. Struct. Biol., 116, 71, 10.1006/jsbi.1996.0013

1973, Arch. Biochem. Biophys., 157, 451, 10.1016/0003-9861(73)90661-9

2003, J. Biol. Chem., 278, 18478, 10.1074/jbc.M213021200

1999, Trends Cell Biol., 9, 28, 10.1016/S0962-8924(98)01382-8

1987, Cell., 51, 1039, 10.1016/0092-8674(87)90590-3

1978, Proc. R. Soc. Lond. B. Biol. Sci., 203, 305, 10.1098/rspb.1978.0107

2003, Mol. Biol. Cell., 14, 4470, 10.1091/mbc.e03-01-0033

2000, J. Cell Biol., 148, 45, 10.1083/jcb.148.1.45

2003, Mol. Biol. Cell., 14, 1545, 10.1091/mbc.02-07-0109

1979, Am. J. Anat., 154, 455, 10.1002/aja.1001540402

1985, Cell., 43, 287, 10.1016/0092-8674(85)90034-0

1997, J. Cell Biol., 139, 1137, 10.1083/jcb.139.5.1137

1999, Dev. Biol., 213, 283, 10.1006/dbio.1999.9383

1992, Proc. Natl. Acad. Sci. USA., 89, 9860, 10.1073/pnas.89.20.9860

1969, J. Ultrastruct. Res., 26, 31, 10.1016/S0022-5320(69)90033-1

1986, Eur. J. Cell Biol., 42, 344

2002, Nat. Rev. Mol. Cell Biol., 3, 753, 10.1038/nrm934

1999, J. Cell Sci., 112(Pt 1), 21

1979, Dev. Biol., 71, 228, 10.1016/0012-1606(79)90166-0

2003, J. Biol. Chem., 278, 19549, 10.1074/jbc.M300767200

1960, Biochem. J., 75, 588, 10.1042/bj0750588