Thyroxine signal transduction in liver cells involves phospholipase C and phospholipase D activation. Genomic independent action of thyroid hormone
Tóm tắt
Numerous investigations demonstrate a novel role of thyroid hormone as a modulator of signal transduction. Protein kinase C (PKC) is critical to the mechanism by which thyroid hormones potentiate both the antiviral and immunomodulatory actions of IFNγ in different cells and regulate the exchange of signalling phospholipids in hepatocytes. Because nothing is known about accumulation of PKC modulator - diacylglycerol in cells treated with T4, we examined the nongenomic effect of thyroid hormones on DAG formation and phospholipase activation in liver cells. The results obtained provide the first demonstration of phospholipase C, phospholipase D and protein kinase C nongenomic activation and diacylglycerol (DAG) accumulation by L-T4 in liver cells. The experiments were performed in either the [14C]CH3COOH-labeled rat liver slices or isolated hepatocytes pre-labeled by [14C]oleic acid. L-T4 activates the DAG production in a concentration- and time-dependent manner. DAG formation in stimulated cells is biphasic and short-lived event: there is an initial, rapid rise in DAG concentration and then a slower accumulation that can be sustained for a few minutes. The early phase of L-T4 generated DAG only is accompanied by phosphatidylinositol 4,5-bisphosphate level decrease and inositol 1,4,5-trisphosphate formation while the second phase is abolished by PKC inhibitor l,(5-isoquinolinesulphonyl)2methylpiperasine dihydrochloride (H7) and propranolol. The second phase of DAG production is accompanied by free choline release, phosphatidylcholine content drop and phosphatidylethanol (Peth) formation. Inhibitor of phospholipase-C-dependent phosphoinositide hydrolysis, neomycin sulfate, reduced the Peth as well as the DAG response to L-T4. The present data have indicated the DAG signaling in thyroid hormone-stimulated liver cells. L-thyroxine activates a dual phospholipase pathway in a sequential and synchronized manner: phospholipase C initiates the DAG formation, and PKC mediates the integration of phospholipase D into the signaling response during the sustained phase of agonist stimulation.
Tài liệu tham khảo
Brent GA, More DD, Larsen PR: Thyroid hormone regulation of gene expression. Annu Rev Physiol. 1991, 53: 17-35. 10.1146/annurev.ph.53.030191.000313.
Laser MA: Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev. 1993, 14: 184-193.
Davis PJ, Davis FB: Nongenomic action of thyroid hormone. Thyroid. 1996, 16: 497-504.
Babenko NA, Kavok NS: Effect of thyroid hormones, phorbol esters, and sphingosine on the incorporation of linoleic acid into lipids in the liver of white rats. Biokhimiya. 1995, 60: 1545-1550.
Krasilnikova OA, Babenko NA: Role of thyroid hormones in regulation of phosphatidic acid, phosphatidylinositole, and polyphosphoinositide synthesis in liver cells. Biokhimiya. 1996, 61: 1008-1014.
Lin HY, Thacorf HR, Davis FB, Davis PJ: Potentiation by thyroxine of interferon-gamma-induced antiviral state requires PKA and PKC activities. Am J Physiol. 1996, 271(4 Pt1): C1256-C1261.
Lawrence WD, Schoenl M, Davis PJ: Stimulation in vitro of rabbit erythrocyte cytosol phospholipid-dependent protein kinase activity. A novel action of thyroid hormone. J Biol Chem. 1989, 264(9): 4766-4768.
Lin HY, Davis FB, Gordinier JK, Martino LJ, Davis PJ: Thyroid hormone induces activation of mitogen-activated protein kinase in cultured cells. Am J Physiol. 2000, 276(5Pt1): 1014-1024.
Hummerich H, Soboll S: Rapid stimulation of calcium uptake into rat liver by L-triiodothyronine. Biochem J. 1989, 258: 363-367.
Lamax RB, Gobbold PH, Cuthbertson KSR, Robertson WR: Acute effects of thyroid hormones on cytoplasmic [Ca2+] in single rat heart cells. J Endocrinol. 1989, 121: 57-
Facchinetti M, de Boland AR: Calcitriol transmembrane signaling regulation of rat muscle phospholipase D activity. J Lipid Research. 1998, 39: 197-204.
Tien X-Y, Brasitus TA, Qasawa BN, Norman AW, Sitrin MD: Effect of 1,25(OH)2D3 and its analogues on membrane phosphoinositide turnover and [Ca2+] in Caco-2 cells. Am J Physiol. 1993, 265: G143-G148.
Beno DWA, Brady LM, Bissonnette M, Davis BH: Protein kinase C and mitogen-activated protein kinase are required for 1,25-dihydroxyvitamin D3-stimulated Egr induction. J Biol Chem. 1995, 270: 3642-3647. 10.1074/jbc.270.8.3642.
Nishizuka Y: Intracellular signaling by hidrolisis of phospholipids and activation of protein kinase C. Science. 1992, 258: 607-614.
Exton JH: Phosphatidylcholine breakdown and signal transduction. Biochim Biophys Acta. 1994, 1212: 26-42. 10.1016/0005-2760(94)90186-4.
Gustavsson L, Moehren G, Torres-Marqez ME, Benistant C, Rubin R, Hoek JB: The role of cytosolic Ca2+, protein kinase C and protein kinase A in hormonal stimulation of phospholipase D in rat hepatocytes. J Biol Chem. 1994, 269: 849-859.
Donchenko JB, Zannetti A, Baldini PM: Insulin-stimulated hydrolysis of phosphatidylcholine by phospholipase C and phospholipase D in cultured rat hepatocytes. Biochim Biophys Acta. 1994, 1222: 492-500. 10.1016/0167-4889(94)90059-0.
Adachi T, Nakashima S, Saji S, Nakamura T, Nozawa Y: Phospholipase D activation in growth factor-stimulated rat hepatocytes mediates the expressions of c-jun and c-foc: involvement of protein tyrosine kinase, protein kinase C, and Ca2+. Hepatology. 1996, 24: 1274-1281.
Babenko NA, Phylonenko NS, Viliyasenor VZ, Nikitin VN: Thyroid hormones stimulate the phospholipase D activity in hepatocytes of rats of different age and thyroid state. Reports USSR Acad Sci. 1991, 320: 745-748.
Kumada T, Miyata H, Nozawa Y: Involvement of tyrosine phosphorylation in IgE receptor-mediated phospholipase D activation in rat basophilic leukemia (RBL-2H3) cells. Biochem Biophys Res Commun. 1993, 191: 1363-1368. 10.1006/bbrc.1993.1367.
Kates M: Techniques of lipidology: Isolation, analysis and identification of lipids. New York: American Elsevier Publishing Company. 1972
Provost JJ, Fudge J, Isaraelit S, Siddiqi AR, Exton JH: Tissue and subcellular distribution of phospholipase D. Biochem J. 1996, 319: 285-291.
Folch J, Lees M, Stanley GHS: A simple method for the isolation and purification of total lipid from animal tissues. J Biochem. 1957, 226: 497-509.
Andrews WV, Conn PM: Measurement of inositol phospholipid metabolites by one-dimensional thin-layer chromatography. In Methods in Enzymology. New York: Academic Press, Inc. 1987, 141: 156-168.
Jones MJ, Murray W: Evidence that ceramide selectively inhibits protein kinase C-α tranclocation and modulates bradykinin activation of phospholipase D. J Biol Chem. 1995, 270: 5007-5013. 10.1074/jbc.270.10.5007.
Kikawa U, Takai Y, Minakuchi R, mohara S, Nishizuka Y: Calcium-activated, phospholipid-dependent protein kinase of rat brain. Subcellular distribution, purification and properties. J Biol Chem. 1982, 257: 13341-13348.
Bradford M: A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem. 1972, 72: 248-254. 10.1006/abio.1976.9999.