Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol

Microbial Cell Factories - Tập 7 Số 1 - 2008
Eric J. Steen1,2, Rossana Chan2,3, Nilu Prasad2,3, Samuel L. Myers2,3, Young-Mo Kim2,3, Alyssa M. Redding2,3, Mario Ouellet2,3, Jay D. Keasling1,2,3
1Department of Bioengineering, University of California, Berkeley, USA
2Joint BioEnergy Institute, Emeryville, USA
3Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, USA

Tóm tắt

Abstract Background

Increasing energy costs and environmental concerns have motivated engineering microbes for the production of "second generation" biofuels that have better properties than ethanol.

Results and conclusion

Saccharomyces cerevisiae was engineered with an n-butanol biosynthetic pathway, in which isozymes from a number of different organisms (S. cerevisiae, Escherichia coli, Clostridium beijerinckii, and Ralstonia eutropha) were substituted for the Clostridial enzymes and their effect on n-butanol production was compared. By choosing the appropriate isozymes, we were able to improve production of n-butanol ten-fold to 2.5 mg/L. The most productive strains harbored the C. beijerinckii 3-hydroxybutyryl-CoA dehydrogenase, which uses NADH as a co-factor, rather than the R. eutropha isozyme, which uses NADPH, and the acetoacetyl-CoA transferase from S. cerevisiae or E. coli rather than that from R. eutropha. Surprisingly, expression of the genes encoding the butyryl-CoA dehydrogenase from C. beijerinckii (bcd and etfAB) did not improve butanol production significantly as previously reported in E. coli. Using metabolite analysis, we were able to determine which steps in the n-butanol biosynthetic pathway were the most problematic and ripe for future improvement.

Từ khóa


Tài liệu tham khảo

Fortman JL, et al: Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol. 2008, 26 (7): 375-81. 10.1016/j.tibtech.2008.03.008.

Atsumi S, et al: Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng. 2007

Inui M, et al: Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol. 2008, 77 (6): 1305-16. 10.1007/s00253-007-1257-5.

Ro DK, et al: Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature. 2006, 440 (7086): 940-3. 10.1038/nature04640.

Fischer CR, Klein-Marcuschamer D, Stephanopoulos G: Selection and optimization of microbial hosts for biofuels production. Metab Eng. 2008

Lee SY, Lee Y: Metabolic engineering of Escherichia coli for production of enantiomerically pure (R)-(3)-hydroxycarboxylic acids. Appl Environ Microbiol. 2003, 69 (6): 3421-6. 10.1128/AEM.69.6.3421-3426.2003.

Martin VJ, et al: Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol. 2003, 21 (7): 796-802. 10.1038/nbt833.

Yoshikuni Y, et al: Redesigning enzymes based on adaptive evolution for optimal function in synthetic metabolic pathways. Chem Biol. 2008, 15 (6): 607-18. 10.1016/j.chembiol.2008.05.006.

Pitera DJ, et al: Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng. 2007, 9 (2): 193-207. 10.1016/j.ymben.2006.11.002.

Chin JW, et al: Analysis of NADPH supply during xylitol production by engineered Escherichia coli. Biotechnol Bioeng. 2008

Brachmann CB, et al: Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 1998, 14 (2): 115-32. 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2.

Burke D, Dawson D, Stearns T: Methods in yeast genetics: a Cold Spring Harbor laboratory course manual. 2000, Plainview, NY: Cold Spring Harbor Laboratory Press

Li MZ, Elledge SJ: Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods. 2007, 4 (3): 251-6. 10.1038/nmeth1010.

Dae-Kyun Ro MO, Eric Paradise, Helcio Burd, Diana Eng, Chris Paddon, Jack Newman, Jay Keasling: Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid. BMC Biotech. 2008, 83-8

Gietz RW: RA Guide to Yeast Genetics and Molecular and Cell Biology. Part B. 2002, 87-96. San Diego, CA: Academic Press Inc

Shimazu M, et al: A sensitive and robust method for quantification of intracellular short-chain coenzyme A esters. Anal Biochem. 2004, 328 (1): 51-9. 10.1016/j.ab.2004.01.025.