Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants

BMC Complementary and Alternative Medicine - Tập 9 - Trang 1-11 - 2009
Tamsyn SA Thring1, Pauline Hili2, Declan P Naughton1
1School of Life Sciences, Kingston University London, UK
2Neal's Yard Remedies, London, UK

Tóm tắt

Owing to their roles in tissue remodelling in health and disease, several studies have reported investigations on plant extracts as inhibitors of proteinases and as anti-oxidants. The anti-ageing and anti-oxidant properties of 23 plant extracts (from 21 plant species) were assessed as anti-elastase and anti-collagenase activities and in selected anti-oxidant assays along with phenolic content. Anti-elastase activities were observed for nine of the extracts with inhibitory activity in the following order: white tea (~89%), cleavers (~58%), burdock root (~51%), bladderwrack (~50%), anise and angelica (~32%). Anti-collagenase activities were exhibited by sixteen plants of which the highest activity was seen in white tea (~87%), green tea (~47%), rose tincture (~41%), and lavender (~31%). Nine plant extracts had activities against both elastase (E) and collagenase (C) and were ranked in the order of white tea (E:89%, C:87%) > bladderwrack (E:50%, C:25%) > cleavers (E:58%, C:7%) > rose tincture (E:22%, C:41%) > green tea (E:10%: C:47%) > rose aqueous (E: 24%, C:26%) > angelica (E:32%, C:17%) > anise (E:32%, C:6%) > pomegranate (E:15%, C:11%). Total phenolic content varied between 0.05 and 0.26 mg gallic acid equivalents (GAE)/mL with the exception of white tea (0.77 mg GAE/mL). For anti-oxidant assessment, the Trolox equivalent anti-oxidant capacity (TEAC) assay revealed activity for all extracts. White tea had the highest activity equivalent to ~21 μM Trolox for a 6.25 μg aliquot. In addition, seven extracts exhibited activities = 10 μM Trolox with witch hazel (6.25 μg = 13 μM Trolox) and rose aqueous (6.25 μg = 10 μM Trolox) showing very high activities at low concentrations. A high activity for white tea was also found in the superoxide dismutase (SOD) assay in which it exhibited ~88% inhibition of reduction of nitroblue tetrazolium. High activities were also observed for green tea (86.41%), rose tincture (82.77%), witch hazel (82.05%) and rose aqueous (73.86%). From a panel of twenty three plant extracts, some one dozen exhibit high or satisfactory anti-collagenase or anti-elastase activities, with nine having inhibitory activity against both enzymes. These included white tea which was found to have very high phenolic content, along with high TEAC and SOD activities.

Tài liệu tham khảo

Benaiges A, Marcet P, Armengol R, Betes C, Girones E: Study of the refirming effect of a plant complex. Int J Cosmet Sci. 1998, 20: 223-233. 10.1046/j.1467-2494.1998.176608.x. Jenkins G: Molecular mechanisms of skin ageing. Mech Ageing Dev. 2002, 123: 801-810. 10.1016/S0047-6374(01)00425-0. Schlotmann K, Kaeten M, Black AF, Damour O, Waldmann-Laue M, Forster T: Cosmetic efficacy claims in vitro using a three-dimensional human skin model. Int J Cos Sci. 2001, 23: 309-318. 10.1046/j.1467-2494.2001.00098.x. Aslam MN, Lansky EP, Varani J: Pomegranate as a cosmeceutical source: Pomegranate fractions promote proliferation and procollagen synthesis and inhibit matrix metalloproteinase-1 production in human skin cells. J Ethnopharmacol. 2006, 103: 311-318. 10.1016/j.jep.2005.07.027. Lee JJ, Lee CW, Cho YH, Park SM, Lee BC, Hyeong BP: Tinged autumnal leaves of maple and cherry trees as potential anti-oxidant sources. Antiaging: Physiology to formulation. 2006, Illinois, USA: Allured Publishing Corporation, 11-1 Kaur G, Jabbar Z, Athar M, Alam MS: Punica granatum (pomegranate) flower extract possesses potent anti-oxidant activity and abrogates Fe-NTA induced hepatotoxicity in mice. Food Chem Toxicol. 2006, 44: 984-993. 10.1016/j.fct.2005.12.001. Fisher AEO, Hague TA, Clarke CL, Naughton DP: Catalytic superoxide scavenging by metal complexes of the calcium chelator EGTA and contrast agent EHPG. Biochem Biophys Res Commun. 2004, 323: 163-167. 10.1016/j.bbrc.2004.08.066. Arct J, Pytkowska K: Flavonoids of biologically active cosmeceuticals. Clin Dermatol. 2008, 26: 347-357. 10.1016/j.clindermatol.2008.01.004. Kostyuk VA, Potapovich AI, Strigunova EN, Kostyuk TV, Afanas'ev IB: Experimental evidence that flavonoid metal complexes may act as mimics of superoxide dismutase. Arch Biochem Biophys. 2004, 428: 204-208. 10.1016/j.abb.2004.06.008. Kim Y, Uyama H, Kobayashi S: Inhibition effects of (+)-catechin-aldehyde polycondensates on proteinases causing proteolytic degradation of extracellular matrix. Biochem Biophys Res Commun. 2004, 320: 256-261. 10.1016/j.bbrc.2004.05.163. Raffetto JD, Khalil RA: Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol. 2008, 75: 346-359. 10.1016/j.bcp.2007.07.004. Van Wart HE, Steinbrink DR: A continuous spectrophotometric assay for Clostridium histolyticum collagenase. Anal Biochem. 1981, 113: 356-365. 10.1016/0003-2697(81)90089-0. Baylac S, Racine P: Inhibition of human leukocyte elastase by natural fragrant extracts of aromatic plants. Int J Aromather. 2004, 14: 179-182. 10.1016/j.ijat.2004.09.008. Melzig MF, Löser B, Ciesielski S: Inhibition of neutrophil elastase activity by phenolic compounds from plants. Pharmazie. 2001, 56: 967-970. Siedle B, Cisielski S, Murillo R, Löser B, Castro V, Klaas CA, Hucke O, Labahn A, Melzig MF, Merfort I: Sesquiterpene lactones as inhibitors of human neutrophil elastase. Bioorg Med Chem. 2002, 10: 2855-2861. 10.1016/S0968-0896(02)00149-9. Barrantes E, Guinea M: Inhibition of collagenase and metalloproteinases by aloins and aloe gel. Life Sci. 2003, 72: 843-850. 10.1016/S0024-3205(02)02308-1. Lee KK, Kim JH, Cho JJ, Choi JD: Inhibitory Effects of 150 plant extracts on elastase activity, and their anti-inflammatory effects. Int J Cosmet Sci. 1999, 21: 71-82. 10.1046/j.1467-2494.1999.181638.x. An B, Kwak J, Park J, Lee J, Park T, Lee J, Son J, Jo C, Byun M: Inhibition of enzyme activities and the antiwrinkle effect of polyphenol isolated from the Persimmon Leaf (Diospyros kaki folium) on human skin. Dermatol Surg. 2005, 31: 848-855. Van Wyk B, Wink M: Medicinal plants of the world. 2004, Pretoria, Briza Publications Bruneton J: Pharmacognosy, phytochemistry, medicinal plants. 1999, Paris, Lavoisier Publishing Inc Rusak G, Komes D, Likić S, Horžić D, Kovač M: Phenolic content and antioxidative capacity of green and white tea extracts depending on extraction conditions and the solvent used. Food Chem. 2008, 110: 852-858. 10.1016/j.foodchem.2008.02.072. de Oliveira AC, Valentim IB, Silva CA, Bechara EJH, de Barros MP, Mano CM, Goulart MOF: Total phenolic content and free radical scavenging activities of methanolic extract powders of tropical fruit residues. Food Chem. 2009, 115: 469-475. 10.1016/j.foodchem.2008.12.045. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C: Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999, 26: 1231-1237. 10.1016/S0891-5849(98)00315-3. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1472-6882/9/27/prepub