Purification and Separation of Carbon Nanotubes

MRS Bulletin - Tập 29 - Trang 252-259 - 2011
R. C. Haddon, J. Sippel, A. G. Rinzler, F. Papadimitrakopoulos

Tóm tắt

The problems posed by the synthesis and purification of single-walled carbon nanotubes (SWNTs) have inhibited progress in the field. In this article, we review the methods avaulable for measuring the purity of SWNTs and the current status of processes designed to purify them.We emphasize the hierarchy of the purification steps that must be developed in order to obtaun high-quality material suitable for the full range of advanced applications that are envisioned for the ultimate carbon nanofiber.We review two strategies for SWNT purification, the assessment of SWNT purity by use of near-IR spectroscopy and its application to the thermal oxidation of thin films of SWNTs, as well as recent advances in the separation of metallic and semiconducting SWNTs. While substantial progress has been made in the purification and separation of SWNTs, we note the need for quality control and quality assurance within the industry. Much work remauns before pure SWNTs of specific lengths, diameters, and chirality can be made avaulable for applications.

Tài liệu tham khảo

M.S. Dresselhaus, G. Dresselhaus, and P. Avouris, eds., Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Springer-Verlag, Berlin, 2001). S. Niyogi, M.A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M.E. Itkis, and R.C. Haddon, Acc. Chem. Res. 35 (2002) p. 1105. A.C. Dillon, T. Gennett, K.M. Jones, J.L. Alleman, P.A. Parilla, and M.J. Heben, Adv. Mater. 11 (1999) p. 1354. C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chappelle, S. Lefrant, P. Deniard, R. Lee, and J.E. Fischer, Nature 388 (1997) p. 756. J. Liu, A.G. Rinzler, H. Dau, J.H. Hafner, R.K. Bradley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, F. Rodriguez-Macias, Y.-S. Shon, T.R. Lee, D.T. Colbert, and R.E. Smalley, Science 280 (1998) p. 1253. A.G. Rinzler, J. Liu, H. Dau, P. Nikolaev, C.B. Huffman, F.J. Rodriguez-Macias, P.J. Boul, A.H. Lu, D. Heymann, D.T. Colbert, R.S. Lee, J.E. Fischer, A.M. Rao, P.C. Eklund, and R.E. Smalley, Appl. Phys. A 67 (1998) p. 29. T.W. Ebbesen, P.M. Ajayan, H. Hiura, and K. Tanigaki, Nature 367 (1994) p. 519. P. Nikolaev (1996), unpublished report. I.W. Chiang, B.E. Brinson, R.E. Smalley, J.L. Margrave, and R.H. Hauge, J. Phys. Chem. B 105 (2001) p. 1157. I.W. Chiang, B.E. Brinson, A.Y. Huang, P.A. Willis, M.J. Bronikowski, J.L. Margrave, R.E. Smalley, and R.H. Hauge, J. Phys. Chem. B 105 (2001) p. 8297. J.M. Moon, K.H. An, Y.H. Lee, Y.S. Park, D.J. Bae, and G.S. Park, J. Phys. Chem. B 105 (2001) p.5677. T. Jeong, W.-Y. Kim, and Y.-B. Hahn, Chem. Phys. Lett. 344 (2001) p. 18. P. Hou, C. Liu, Y. Tong, S. Xu, M. Liu, and H. Cheng, Mat. Res. 16 (2001) p. 2526. W. Zhou, Y.H. Ooi, R. Russo, P. Papanek, D.E. Luzzi, J.E. Fischer, M.J. Bronikowski, P.A. Willis, and R.E. Smalley, Chem. Phys. Lett. 350 (2001) p. 6. E. Borowiak-Palen, X. Liu, T. Pichler, M. Knupfer, A. Graff, and J. Fink, in AIP Conf. Proc. 633 (2002) p. 341. A.R. Harutyunyan, B.K. Pradhan, J. Chang, G. Chen, and P.C. Eklund, J. Phys. Chem. B 106 (2002) p. 8671. B. Zheng, Y. Li, and J. Liu, Appl. Phys. A 74 (2002) p. 345. C.-M. Yang, K. Kaneko, M. Yudasaka, and S. Iijima, Physica B 323 (2002) p. 140. M.E. Itkis, D. Perea, S. Niyogi, S. Rickard, M. Hamon, H. Hu, B. Zhao, and R.C. Haddon, Nano Lett. 3 (2003) p. 309. M.E. Itkis, S. Niyogi, M. Meng, M. Hamon, H. Hu, and R.C. Haddon, NanoLett. 2 (2002) p. 155. A. Ugawa, A.G. Rinzler, and D.B. Tanner, Phys. Rev. B 60 (1999) p. R11305. K. Kamaras, M.E. Itkis, H. Hu, B. Zhao, and R.C. Haddon, Science 301 (2003) p. 1501. R. Sen, S.M. Rickard, M.E. Itkis, and R.C. Haddon, Chem. Mater. 15 (2003) p. 4273. S. Lebedkin, F. Hennrich, T. Skipa, and M. Kappes, J. Phys. Chem. B 107 (2003) p. 1949. J.L. Zimmerman, R.K. Bradley, C.B. Huffman, R.H. Hauge, and J.L. Margrave, Chem. Mater. 12 (2000) p. 1361. G.S. Duesberg, J. Muster, V. Krstic, M. Burghard, and S. Roth, Appl. Phys. A 67 (1998) p.117. G.S. Duesberg, W. Blau, H.J. Byrne, J. Muster, M. Burghard, and S. Roth, Synth. Met. 103 (1999) p. 2484. S.K. Doorn, I.R.F. Fields, H. Hu, M. Hamon, R.C. Haddon, J.P. Selegue, and V. Majidi, J. Am. Chem. Soc. 124 (2002) p. 3169. D. Chattopadhyay, S. Lastella, S. Kim, and F. Papadimitrakopoulos, J. Am. Chem. Soc. 124 (2002) p. 728. B. Chen and J.P. Selegue, Anal. Chem. 74 (2002) p. 4774. E. Farkas, M. Elizabeth Anderson, Z. Chen, and A.G. Rinzler, Chem. Phys. Lett. 363 (2002) p.111. J. Chen, M.A. Hamon, H. Hu, Y. Chen, A.M. Rao, P.C. Eklund, and R.C. Haddon, Science 282 (1998) p. 95. M.A. Hamon, J. Chen, H. Hu, Y. Chen, A.M. Rao, P.C. Eklund, and R.C. Haddon, Adv. Mater. 11 (1999) p. 834. M.J. O’Connell, P. Boul, L.M. Ericson, C. Huffman, Y. Wang, Y.E. Haroz, C. Kuper, J. Tour, K.D. Ausman, and R.E. Smalley, Chem. Phys. Lett. 342 (2001) p. 265. M.F. Islam, E. Rojas, D.M. Bergey, A.T. Johnson, and A.G. Yodh, Nano Lett. 3 (2003) p.269. J. Appenzeller, R. Martel, V. Derycke, M. Radosavljevic, S. Wind, D. Neumayer, and P. Avouris, Microelectron. Eng. 64 (2002) p. 391. S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tomber, A.M. Cassell, H. Dau, Science 283 (1999) p.512. J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, and H. Dau, Science 287 (2000) p. 622. R.H. Baughman, C. Cui, A. Zakhidov, Z. Iqbal, J. Barisci, G.M. Spinks, G.W. Wallace, A. Mazzoldi, D. De Rossi, A.G. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, Science 284 (1999) p. 1340. P.M. Ajayan, Adv. Mater. 7 (1995) p. 489. P. Nikolaev, M.J. Bronikowski, R.K. Bradley, F. Rohmund, D.T. Colbert, K.A. Smith, and R.E. Smalley, Chem. Phys. Lett. 313 (1999) p. 91. D. Chattopadhyay, I. Galeska, and F. Papadimitrakopoulos, J. Am. Chem. Soc. 125 (2003) p. 3370. M. Zheng, A. Jagota, E.D. Semke, B.A. Diner, R.S. McLean, S.R. Lustig, R.E. Richardson, and N.G. Tassi, Nat. Mater. 2 (2003) p.338. R. Krupke, F. Hennrich, H. v. Lohneysen, and M.M. Kappes, Science 301 (2003) p. 344. M.S. Strano, C.A. Dyke, M.L. Usrey, P.W. Barone, M.J. Allen, H. Shan, C. Kittrell, R.H. Hauge, J.M. Tour, and R.E. Smalley, Science 301 (2003) p. 1519. Z. Chen, X. Du, M.-H. Du, C.D. Rancken, H.-P. Cheng, and A.G. Rinzler, Nano Lett. 3 (2003) p. 1245. R. Sauto, M. Fujita, G. Dresselhaus, and M.S. Dresselhaus, Appl. Phys. Lett. 60 (1992) p. 2204. M.A. Pimenta, A. Marucci, S. Empedocles, M. Bawendi, E.B. Hanlon, A.M. Rao, P.C. Eklund, R.E. Smalley, G. Dresselhaus, and M.S. Dresselhaus, Phys. Rev. B 58 (1998) p. R16016. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, Synth. Met. 103 (1999) p. 2555. M.J. O’Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, B.R. Weisman, and R.E. Smalley, Science 297 (2002) p. 593. M.S. Strano, C.B. Huffman, V.C. Moore, M.J. O’Connell, E.H. Haroz, J. Hubbard, M. Miller, K. Rialon, C. Kittrell, S. Ramesh, R.H. Hauge, and R.E. Smalley, J. Phys. Chem. B 107 (2003) p. 6979. J. Chen, A.M. Rao, S. Lyuksyutov, M.E. Itkis, M.A. Hamon, H. Hu, R.W. Cohn, P.W. Eklund, D.T. Colbert, R.E. Smalley, and R.C. Haddon, J. Phys. Chem. B 105 (2001) p. 2525. S.N. Kim, D. Chattopadhyay, and F. Papadimitrakopoulos, unpublished manuscript. G.G. Samsonidze, S.G. Chou, A.P. Santos, A. Selbst, G. Dresselhaus, M.S. Dresselhaus, A.K. Swan, M.S. Unlu, B.B. Goldberg, K.D. Chattopadhyay, and S.N. Kim, Appl. Phys. Lett. (2003) submitted for publication. M.A. Pimenta, S.A. Empedocles, M.G. Bawendi, E.B. Hanlon, A.M. Rao, P.C. Eklund, R.E. Smalley, G. Dresselhaus, and M.S. Dresselhaus, Phys. Rev. B 58 (1998) p. R16016. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, Synth. Met. 103 (1999) p. 2555. R.B. Weisman, Nat. Mater. 2 (2003) p. 569. G.D. Li, Z.K. Tang, N. Wang, and J.S. Chen, Carbon 40 (2002) p. 917. Z.K. Tang, H.D. Sun, J. Wang, J. Chen, and G. Li, Appl. Phys. Lett. 73 (1998) p. 2287. H.D. Sun, Z.K. Tang, J. Chen, and G. Li, Appl. Phys. A 69 (1999) p. 381. C.L. Cheung, A. Kurtz, H. Park, and C.M. Lieber, J. Phys. Chem. B 106 (2002) p. 2429. H. Kataura, Y. Kumazawa, Y. Maniwa, Y. Ohtsuka, R. Sen, S. Suzuki, and Y. Achiba, Carbon 38 (2000) p. 1691. S. Lim, D. Ciuparu, C. Pak, F. Dobek, Y. Chen, D. Harding, L. Pfefferle, and G. Haller, J. Phys. Chem. B 107 (2003) p. 11048. D.E. Resasco, W.E. Alvarez, F. Pompeo, L. Balzano, J.E. Herrera, B. Kitiyanan, and A.A. Borgna, J. Nanopart. Res. 4 (2002) p. 131. D. Ciuparu, Y. Chen, S. Lim, G.L. Haller, and L. Pfefferle, J. Phys. Chem. B 108 (2004) p.503. T. Hayashi, Y.A. Kim, T. Matoba, M. Esaka, K. Nishimura, T. Tsukada, M. Endo, and M.S. Dresselhaus, Nano Lett. 3 (2003) p. 887. J. Duxiao, H. Nongyue, Z. Yuanying, X. Chunxiang, Y. Chunwei, and L. Zuhong, Mater. Chem. Phys. 69 (2001) p. 246. S. Bandow, S. Asaka, Y. Sauto, A.M. Rao, L. Grigorian, E. Richter, and P.C. Eklund, Phys. Rev. Lett. 80 (1998) p. 3779. C. Marin, M.D. Serrano, N. Yao, and A.G. Ostrogorsky, Nanotechnology 13 (2002) p. 218. C.-H. Kiang, J. Phys. Chem. A 104 (2000) p.2454.