The Protein Coat in Membrane Fusion: Lessons from Fission

Traffic - Tập 3 Số 4 - Trang 256-267 - 2002
Michael M. Kozlov1, Leonid Chernomordik2
1Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
2Section on Membrane Biology, LCMB, NICHD, National Institutes of Health, Bethesda, MD 20892–1855, USA

Tóm tắt

Multiple cell biological processes involve two opposite rearrangements of membrane configuration, referred to as fusion and fission. While membrane intermediates in protein‐mediated fusion have been studied in some detail, the global force which drives sequential stages of the fusion reaction from early local intermediates to an expanding fusion pore remains unknown. Fusion proceeds via stages, which are analogous but in the opposite direction to that of membrane budding‐off and fission driven by protein coats. On the basis of this analogy, we propose that an interconnected coat formed by membrane‐bound activated fusion proteins surrounding the membrane contact zone generates the driving force for fusion. This fusion protein coat has a strongly curved intrinsic shape opposite to that of the protein coat driving fission. To relieve internal stresses, the fusion protein coat spontaneously bends out of the initial shape of the membrane surface. This bending produces elastic stresses in the underlying lipid bilayer and drives its fusion with the apposing membrane. The hypothesis that ‘bystander’ proteins (i.e. fusion proteins outside the contact zone) generate the driving force for fusion offers a new interpretation for a number of known features of the fusion reaction mediated by the prototype fusion protein, influenza hemagglutinin, and might bring new insights into mechanisms of other fusion reactions.

Từ khóa


Tài liệu tham khảo

Tanford C, 1973, The Hydrophobic Effect: Formation of Micelles and Biological Membranes., 200

10.1146/annurev.biochem.68.1.863

10.1146/annurev.biochem.69.1.531

10.1146/annurev.biochem.70.1.777

10.1101/SQB.1995.060.01.062

10.1016/0955-0674(95)80007-7

10.1038/35054500

10.1016/0092-8674(94)90344-1

10.1083/jcb.136.1.81

10.1083/jcb.140.6.1369

10.1083/jcb.150.3.601

10.1083/jcb.151.2.413

10.1093/emboj/20.15.4024

10.1083/jcb.151.2.453

10.1103/PhysRevB.28.255

Markin VS, 1984, On the theory of membrane fusion. The stalk mechanism, Gen Physiol Biophys, 3, 361

10.1016/S0006-3495(93)81256-6

10.1016/S0006-3495(95)79966-0

10.1085/jgp.102.6.1131

10.1085/jgp.106.5.783

10.1016/S0006-3495(91)82196-8

10.1101/SQB.1995.060.01.060

Knutton S, 1980, The role of cell swelling and haemolysis in Sendai virus‐induced cell fusion and in the diffusion of incorporated viral antigens, J Cell Sci, 42, 153, 10.1242/jcs.42.1.153

10.1016/S0006-3495(95)80119-0

10.1038/35043117

10.1146/annurev.biochem.66.1.511

10.1016/S0955-0674(98)80066-5

10.1034/j.1600-0854.2000.010501.x

10.1128/MMBR.62.4.1171-1190.1998

10.1038/35078500

10.1016/S0092-8674(00)80654-6

10.1016/S0092-8674(00)81228-3

10.1128/JVI.74.24.11538-11547.2000

10.1016/S0955-0674(00)00236-2

10.1016/S0968-0004(99)01538-8

10.1038/35065645

10.1016/S0959-4388(00)00126-4

10.1038/35044540

10.1146/annurev.cellbio.17.1.517

10.1016/S0006-3495(99)76917-1

10.1034/j.1600-0854.2001.020107.x

10.1083/jcb.114.5.869

10.1016/S0006-3495(98)74056-1

10.1083/jcb.119.6.1395

10.1073/pnas.121191898

10.1007/BF00254765

10.1034/j.1600-0854.2000.010806.x

10.1016/0304-4157(87)90016-5

10.1007/BF00232676

10.1016/0042-6822(87)90466-1

10.1083/jcb.133.3.559

10.1021/bi00052a014

10.1099/0022-1317-76-7-1541

10.1016/S0005-2736(01)00350-9

10.1002/j.1460-2075.1986.tb04175.x

10.1006/excr.1995.1052

10.1016/S0006-3495(00)76393-4

10.1016/0092-8674(93)90260-W

10.1038/387426a0

10.1091/mbc.11.7.2359

10.1083/jcb.151.2.425

10.1091/mbc.11.11.3765

10.1091/mbc.10.8.2759

Schoch C, 1993, Role of the fusion peptide sequence in initial stages of influenza hemagglutinin‐induced cell fusion, J Biol Chem, 268, 9267, 10.1016/S0021-9258(18)98345-6

10.1006/viro.1997.8686

10.1128/JVI.74.16.7529-7537.2000

10.1083/jcb.131.3.679

10.1016/S0006-3495(97)78260-2

10.1091/mbc.11.4.1143

10.1021/bi010466

10.1128/JVI.75.21.10208-10218.2001

10.1007/BF01952097

10.1016/S0969-2126(01)00581-0

10.1007/0-306-46824-7_10

10.1128/JVI.75.9.4268-4275.2001

10.1007/BF01311033

10.1074/jbc.M001036200

10.1074/jbc.271.3.1262

10.1083/jcb.150.5.1125

10.1073/pnas.201398798

10.1126/science.1589771

10.1016/S0896-6273(00)80850-8

10.1016/0042-6822(92)90090-C

Helfrich W, 1973, Elastic properties of lipid bilayers: theory possible experiments, Z Naturforsch, 28, 693, 10.1515/znc-1973-11-1209

10.1051/jp2:1995141

10.1039/ft9959102847

10.1021/la991287k

10.1016/0021-9797(80)90289-1

10.1103/PhysRevLett.64.2094