Magnetic control of transverse electric polarization in BiFeO3

Nature Communications - Tập 6 Số 1
Masashi Tokunaga1, Mitsuru Akaki1, T. Ito2, Shin Miyahara3, Atsushi Miyake1, H. Kuwahara4, Nobuo Furukawa5
1Institute for Solid State Physics, University of Tokyo, 5‐1‐5 Kashiwanoha Kashiwa, Chiba 277‐8581, Japan
2Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8562, Japan
3Department of Applied Physics, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku Fukuoka 814-0180, Japan
4Department of Physics, Sophia University, 7‐1 Kioi‐cho, Chiyoda‐ku, Tokyo 102‐8554, Japan
5Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 229-8558, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hill, N. A. Why are there so few magnetic ferroelectrics. J. Phys. Chem. B 104, 6694 (2000).

Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature 426, 55 (2003).

Tokura, Y., Seki, S. & Nagaosa, N. Multiferroics of spin origin. Rep. Prog. Phys. 77, 076501 (2014).

Katsura, H., Nagaosa, N. & Balatsky, A. V. Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95, 057205 (2005).

Mostovoy, M. Ferroelectricity in spiral magnets. Phys. Rev. Lett. 96, 067601 (2006).

Sergienko, I. A. & Dagotto, E. Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites. Phys. Rev. B 73, 094434 (2006).

Choi, Y. J. et al. Ferroelectricity in an Ising chain magnet. Phys. Rev. Lett. 100, 047601 (2008).

Picozzi, S., Yamauchi, K., Sanyal, B., Sergienko, I. A. & Dagotto, E. Dual nature of improper ferroelectricity in a magnetoelectric multiferroic. Phys. Rev. Lett. 99, 227201 (2007).

Jia, C., Onoda, S., Nagaosa, N. & Han, J. H. Bond electronic polarization induced by spin. Phys. Rev. B 74, 224444 (2006).

Jia, C., Onoda, S., Nagaosa, N. & Han, J. H. Microscopic theory of spin-polarization coupling in multiferroic transition metal oxides. Phys. Rev. B 76, 144424 (2007).

Arima, T. Ferroelectricity Induced by proper-screw type magnetic order. J. Phys. Soc. Jpn 76, 073702 (2007).

Kimura, T., Sekio, Y., Nakamura, H., Siegrist, T. & Ramirez, A. P. Cupric oxide as an induced-multiferroic with high-Tc . Nat. Mater. 7, 291 (2008).

Kitagawa, Y. et al. Low-field magnetoelectric effect at room temperature. Nat. Mater. 9, 797 (2010).

Chun, S. H. et al. Electric field control of nonvolatile four-state magnetization at room temperature. Phys. Rev. Lett. 108, 177201 (2012).

Iyama, A. & Kimura, T. Magnetoelectric hysteresis loops in Cr2O3 at room temperature. Phys. Rev. B 87, 180408(R) (2013).

Catalan, G. & Scott, J. F. Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463 (2009).

Shvartsman, V. V., Haumont, R. & Kreisel, J. Large bulk polarization and regular domain structure in ceramic BiFeO3 . Appl. Phys. Lett. 90, 172115 (2007).

Smolenskii, G. A. et al. New Ferroelectrics of complex composition. 4. Sov. Phys. Solid State 2, 2651 (1961).

Fischer, P., Polomska, M., Sosnowska, I. & Szymański, M. Temperature dependence of the crystal and magnetic structures of BiFeO3 . J. Phys. C 13, 1931 (1980).

Sosnowska, I., Peterlin-Neumaier, T. & Steichele, E. Spiral magnetic ordering in bismuth ferrite. J. Phys. C 15, 4835 (1982).

Sosnowska, I. & Zvezdin, A. K. Origin of the long period magnetic ordering in BiFeO3 . J. Magn. Magn. Mater. 140-144, 167 (1995).

Jeong, J. et al. Spin wave measurements over the full brillouin zone of multiferroic BiFeO3 . Phys. Rev. Lett. 108, 077202 (2012).

Zvezdin, A. K. & Pyatakov, A. P. On the problem of coexistence of the weak ferromagnetism and the spin flexoelectricity in multiferroic bismuth ferrite. EPL 99, 57003 (2012).

Popov, Y. F. et al. Linear magnetoelectric effect and phase-transitions in BiFeO3 . JETP Lett. 57, 69 (1993).

Ruette, B. et al. Magnetic-field-induced phase transition in BiFeO3 observed by high-field electron spin resonance: cycloidal to homogeneous spin order. Phys. Rev. B 69, 064114 (2004).

Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229 (2009).

Tokunaga, M., Azuma, M. & Shimakawa, Y. High-field study of strong magnetoelectric coupling in single-domain crystals of BiFeO3 . J. Phys. Soc. Jpn 76, 064713 (2010).

Tabares-Muñoz, C., Rivera, J. P., Bezinges, A., Monnier, A. & Schmid, H. Measurement of the quadratic magneto electric effect on single crystalline BiFeO3 . J. Appl. Phys. 24, 1051 (1985).

Ito, T., Ushiyama, T., Yanagisawa, Y., Kumai, R. & Tomioka, Y. Growth of highly insulating bulk single crystals of multiferroic BiFeO3 and their inherent Internal strains in the domain-switching process. Cryst. Growth Des. 11, 5139 (2011).

Moriya, T. Theory of absorption and scattering of light by magnetic crystals. J. Appl. Phys. 39, 1042 (1968).

Kaplan, T. A. & Mahanti, S. D. Canted-spin-caused electric dipoles: a local symmetry theory. Phys. Rev. B 83, 174432 (2011).

Darakychiev, M., Catalan, G. & Scott, J. F. Landau theory od domain wall magnetoelectricity. Phys. Rev. B 81, 224118 (2010).

Lee, S., Ratcliff, W. II, Cheong, S.-W. & Kiryukhin, V. Electric field control of the magnetic state in BiFeO3 single crystals. Appl. Phys. Lett. 92, 192906 (2008).

Mitamura, H. et al. Dielectric polarization measurements on the antiferromagnetic triangular lattice system CuFeO2 in pulsed high magnetic fields. J. Phys. Soc. Jpn 76, 094709 (2007).