Energies, structures, and electronic properties of molecules in solution with the C‐PCM solvation model

Journal of Computational Chemistry - Tập 24 Số 6 - Trang 669-681 - 2003
Maurizio Cossi1, Nadia Rega1, Giovanni Scalmani1, Vincenzo Barone1
1Dipartimento di Chimica, Università Federico II, Complesso Monte S. Angelo, via Cintia, I‐80126 Napoli, Italy

Tóm tắt

AbstractThe conductor‐like solvation model, as developed in the framework of the polarizable continuum model (PCM), has been reformulated and newly implemented in order to compute energies, geometric structures, harmonic frequencies, and electronic properties in solution for any chemical system that can be studied in vacuo. Particular attention is devoted to large systems requiring suitable iterative algorithms to compute the solvation charges: the fast multipole method (FMM) has been extensively used to ensure a linear scaling of the computational times with the size of the solute. A number of test applications are presented to evaluate the performances of the method. © 2003 Wiley Periodicals, Inc. J Comput Chem 24: 669–681, 2003

Từ khóa


Tài liệu tham khảo

Reichardt C., 1990, Solvents and Solvent Effects in Organic Chemistry

Rivail J. L., 1995, Liquid State Quantum Chemistry in Computational Chemistry: Review of Current Trends, 65

Cramer C. J., 1996, Solvent Effects and Chemical Reactivity, 1

Adamo C., 2001, Theoretical Biochemistry: Processes and Properties of Biological Systems, 467, 10.1016/S1380-7323(01)80013-3

10.1021/cr00031a013

10.1021/cr960149m

10.1021/jp991858h

10.1002/(SICI)1096-987X(20000415)21:5<340::AID-JCC2>3.0.CO;2-M

10.1016/0301-0104(81)85090-2

10.1002/jcc.540161202

10.1016/0009-2614(96)00349-1

10.1016/S0065-3276(08)60416-5

Klamt A., 1993, J Chem Soc Perkin 2 Trans, 799

10.1063/1.472829

Baldridge K., 1997, J Chem Phys, 106, 66622, 10.1063/1.473662

10.1063/1.477614

10.1039/b000184h

10.1016/0009-2614(95)00541-B

Truong T. N., 1996, Int J Quantum Chem, 30, 403

10.1021/jp9716997

Klamt A., 1998, J Phys Chem A, 102, 5057, 10.1021/jp980017s

10.1016/S0378-3812(00)00357-5

Klamt A., 1998, Encyclopedia of Computational Chemistry, 604

10.1007/s002140050457

10.1063/1.474659

10.1021/jp971959k

10.1063/1.477265

10.1063/1.478591

10.1063/1.478861

10.1063/1.1394921

10.1063/1.1354187

Cossi M., J Chem Phys.

10.1002/(SICI)1096-987X(199806)19:8<833::AID-JCC3>3.0.CO;2-Q

10.1063/1.481133

10.1126/science.271.5245.51

10.1016/0009-2614(96)00175-3

Svensson M., 1996, J Phys Chem, 100, 19375, 10.1021/jp962071j

10.1063/1.1730361

10.1021/cr60304a002

10.1107/S0567740878010638

10.1002/jcc.540100504

10.1002/jcc.540120703

Frisch M. J., 2001, Gaussian 01, Development Version (Revision B.01)

10.1002/jcc.540151009

10.1002/(SICI)1096-987X(19960115)17:1<57::AID-JCC6>3.0.CO;2-#

Scalmani G.;Barone V.In preparation.

McWeeny R., 1992, Methods of Molecular Quantum Mechanics

10.1103/PhysRevLett.52.997

Casida M. K., 1995, Recent Advances in Density Functional Methods, 155, 10.1142/9789812830586_0005

10.1103/PhysRevLett.76.1212

10.1002/jcc.540040416

10.1063/1.464728

10.1002/qua.560560850

10.1063/1.476878

10.1021/jp950607f

10.1063/1.480808

10.1021/ja00179a005

10.1007/s002140000239

10.1137/1.9781611971538

York D. M., 1996, J Chem Phys, 105, 2744, 10.1063/1.472136

10.1016/S0009-2614(96)01198-0

10.1021/ja961937w

10.1063/1.460447

10.1063/1.455064

10.1063/1.478522

10.1063/1.474671

10.1021/ja00124a002