Signal assignment and secondary structure analysis of a uniformly [13C, 15N]-labeled membrane protein, H+-ATP synthase subunit c, by magic-angle spinning solid-state NMR

Journal of Biomolecular NMR - Tập 36 - Trang 279-293 - 2006
Masatoshi Kobayashi1,2, Yoh Matsuki1,3, Ikuko Yumen1,4, Toshimichi Fujiwara1, Hideo Akutsu1,2
1Institute for Protein Research, Osaka University, Suita, Japan
2CREST, Japan Science and Technology Agency, Kawaguchi-shi, Saitama, Japan
3BIRD, Japan Science and Technology Agency, Kawaguchi-shi, Saitama, Japan
4Japan Biological Information Consortium, Tokyo, Japan

Tóm tắt

Signal assignment and secondary structural analysis of uniformly [13C, 15N] labeled H+-ATP synthase subunit c from E. coli (79 residues) in the solid state were carried out by two- and three-dimensional solid-state NMR under magic-angle spinning. The protein took on a unique structure even in the solid state from the 13C linewidths of about 1.7 ppm. On the basis of several inter- and intra-residue 13C–13C and 13C–15N chemical shift correlations, 78% of $${\rm C}^{\upalpha}$$ , 72% of $${\rm C}^{\upbeta}$$ , 62% of C′ and 61% of NH signals were assigned, which provided the secondary structure information for 84% of the 79 residues. Here, inter-residue correlations involving Gly, Ala, Pro and side-chains and a higher resolution in the 3D spectrum were significantly useful for the sequence specific assignment. On top of this, the 13C–13C correlation spectra of subunit c was analyzed by reproducing experimental cross peaks quantitatively with chemical shift prediction and signal-intensity calculation based on the structure. It revealed that the subunit c in the solid state could be specified by $$\upalpha$$ -helices with a loop structure in the middle (at sequence 41–45) as in the case of the solution structure in spite of additional extended conformations at 76–79 at the C-terminus.

Tài liệu tham khảo

Baldus M., Petkova A.T., Herzfeld J., Griffin R.G. (1998). Mol. Phys. 95:1197–1207 Bennett A.E., Rienstra C.M., Auger M., Lakshmi K.V., Griffin R.G. (1995). J. Chem. Phys. 103:6951–6958 Bennett A.E., Rienstra C.M., Griffiths J.M., Zhen W.G., Lansbury P.T., Griffin R.G. (1998). J. Chem. Phys. 108:9463–9479 Böckmann A., Lange A., Galinier A., Luca S., Giraud N., Juy M., Heise H., Montserret R., Penin F., Baldus M. (2003). J. Biomol. NMR 27:323–339 Castellani F., van Rossum B., Diehl A., Schubert M., Rehbein K., Oschkinat H. (2002). Nature 420:98–102 Cornilescu G., Delaglio F., Bax A. (1999). J. Biomol. NMR 13:289–302 de Dios A.C., Pearson J.G., Oldfield E. (1993). Science 260:1491–1495 Fujiwara T., Shimomura T., Ohigashi Y., Akutsu H. (1998). J. Chem. Phys. 109:2380–2393 Fujiwara T., Todokoro Y., Yanagishita H., Tawarayama M., Kohno T., Wakamatsu K., Akutsu H. (2004). J. Biomol. NMR 28:311–325 Girvin M., Fillingame R.H. (1993). Biochemistry 32:12167–12177 Girvin M., Rastogi V.K., Abildgaard F., Markley J.L., Fillingame R.H. (1998). Biochemistry 37:8817–8824 Hohwy M., Rienstra C.M., Jaroniec C.P., Griffin R.G. (1999). J. Chem. Phys. 110:7983–7991 Hong M. (1999a). J. Biomol. NMR 15:1–14 Hong M. (1999b). J. Magn. Reson. 139:389–401 Igumenova T.I., McDermott A.E., Zilm K.W., Martin R.W., Paulson E.K., Wand A.J. (2004). J. Am. Chem. Soc. 126:6720–6727 Jiang W., Hermolin J., Fillingame R.H. (2001). Proc. Natl. Acad. Sci. USA 98:4966–4971 Levy G.C., Lichter R.L. (1979) Nitrogen-15 Nuclear Magnetic Resonance Spectroscopy. John Wiley & Sons, Inc, New York Markley J.L., Bax A., Arata Y., Hilbers C.W., Kaptein R., Sykes B.D., Wright P.E., Wüthrich K. (1998). Pure Appl. Chem. 70:117–142 Markley J.L., Meadows D.H., Jardetzky O. (1967). J. Mol. Biol. 27:25–40 Martin R.W., Zilm K.W. (2003). J. Magn. Reson. 165:162–174 Matsuki Y., Akutsu H., Fujiwara T. (2003). J. Magn. Reson. 162:54–66 Meier T., Polzer P., Diederichs K., Welte W., Dimroth P. (2005). Science 308:659–662 Meiler J. (2003). J. Biomol. NMR 26:25–37 Mitome N., Suzuki T., Hayashi S., Yoshida. M. (2004). Proc. Natl. Acad. Sci. USA 101:12159–12164 Morcombe C.R., Zilm K.W. (2003). J. Magn. Reson. 162:479–486 Nakano T., Ikegami T., Suzuki T., Yoshida M., Akutsu H. (2006). J. Mol. Biol. 358:132–144 Neal S., Nip A.M., Zhang H., Wishart D.S. (2003). J. Biomol. NMR 26:215–240 Oldfield E. (1995). J. Biomol. NMR 5:217–225 Pauli J., Baldus M., van Rossum B., de Groot H., Oschkinat H. (2001). Chembiochem 2:272–281 Petkova A.T., Ishii Y., Balbach J.J., Antzutkin O.N., Leapman R.D., Delaglio F., Tycko R. (2002). Proc. Natl. Acad. Sci. USA 97:13045–13050 Petkova A.T., Baldus M., Belenky M., Hong M., Griffin R.G., Herzfeld J. (2003). J. Magn. Reson. 160:1–12 Ponder J.W., Richards F.M. (1987). J. Comput. Chem. 8:1016–1024 Rastogi V.K., Girvin M.E. (1999). Nature 402:263–268 Seavey B.R., Farr E.A., Westler W.M., Markley J.L. (1991). J. Biomol. NMR 1:217–236 Seelert H., Poetsch A., Dencher N.A., Engel A., Stahlberg H., Muller D.J. (2000). Nature 405:418–419 Sepra S., Bax A. (1991). J. Am. Chem. Soc. 113:5490–5492 Stahlberg H., Muller D.J., Suda K., Fotiadis D., Engel A., Meier T., Matthey U., Dimroth P. (2001). EMBO Rep. 2:229–233 Stock D., Lesile A.G., Walker J.E. (1999). Science 286:1700–1705 Straus S.K., Bremi T., Ernst R.R. (1998). J. Biomol. NMR 12:39–50 van Gammeren A.J., Hulsbergen F.B., Hollander J.G., de Groot H.J.M. (2005). J. Biomol. NMR 31:279–293 Wishart D.S., Sykes B.D., Richards F.M. (1991). J. Mol. Biol. 222:311–333 Xu X-P., Case D.A. (2001). J. Biomol. NMR 21:321–333