The mononuclear metal center of type-I dihydroorotase from aquifex aeolicus
Tóm tắt
Dihydroorotase (DHO) is a zinc metalloenzyme, although the number of active site zinc ions has been controversial. E. coli DHO was initially thought to have a mononuclear metal center, but the subsequent X-ray structure clearly showed two zinc ions, α and β, at the catalytic site. Aquifex aeolicus DHO, is a dodecamer comprised of six DHO and six aspartate transcarbamoylase (ATC) subunits. The isolated DHO monomer, which lacks catalytic activity, has an intact α-site and conserved β-site ligands, but the geometry of the second metal binding site is completely disrupted. However, the putative β-site is restored when the complex with ATC is formed and DHO activity is regained. Nevertheless, the X-ray structure of the complex revealed a single zinc ion at the active site. The structure of DHO from the pathogenic organism, S. aureus showed that it also has a single active site metal ion. Zinc analysis showed that the enzyme has one zinc/DHO subunit and the addition of excess metal ion did not stimulate catalytic activity, nor alter the kinetic parameters. The metal free apoenzyme was inactive, but the full activity was restored upon the addition of one equivalent of Zn2+ or Co2+. Moreover, deletion of the β-site by replacing the His180 and His232 with alanine had no effect on catalysis in the presence or absence of excess zinc. The 2.2 Å structure of the double mutant confirmed that the β-site was eliminated but that the active site remained otherwise intact. Thus, kinetically competent A. aeolicus DHO has a mononuclear metal center. In contrast, elimination of the putative second metal binding site in amidohydrolyases with a binuclear metal center, resulted in the abolition of catalytic activity. The number of active site metal ions may be a consideration in the design of inhibitors that selectively target either the mononuclear or binuclear enzymes.
Tài liệu tham khảo
Holm L, Sander C: An evolutionary treasure: unification of a broad set of amidohydrolases related to urease. Proteins. 1997, 28: 72-82. 10.1002/(SICI)1097-0134(199705)28:1<72::AID-PROT7>3.0.CO;2-L.
Fields C, Brichta D, Shephardson M, Farinha M, O’Donovan G: Phlyogenetic analysis and classification of dihydroorotases: a complex history for a complex enzyme. Paths Pyrimidines. 1999, 7: 49-63.
Thoden JB, Phillips GN, Neal TM, Raushel FM, Holden HM: Molecular structure of dihydroorotase: a paradigm for catalysis through the Use of a binuclear metal center. Biochemistry. 2001, 40: 6989-6997. 10.1021/bi010682i.
Washabaugh MW, Collins KD: Dihydroorotase from Escherichia coli. Purification and characterization. J Biol Chem. 1984, 259: 3293-3298.
Purcarea C, Martin P, Vickrey JF, Guy HI, Edwards BF, Evans DR: Cloning, expression and preliminary X-ray analysis of the dihydroorotase from the hyperthermophilic eubacterium aquifex aeolicus. Acta Crystallogr D Biol Crystallogr. 2002, 58: 154-156. 10.1107/S0907444901017528.
Ahuja A, Purcarea C, Ebert R, Sadecki S, Guy HI, Evans DR: Aquifex aeolicus dihydroorotase: association with aspartate transcarbamoylase switches on catalytic activity. J Biol Chem. 2004, 279: 53136-53144. 10.1074/jbc.M403009200. Epub 52004 Sep 53120
Martin PD, Purcarea C, Zhang P, Vaishnav A, Sadecki S, Guy-Evans HI, Evans DR, Edwards BF: The crystal structure of a novel, latent dihydroorotase from aquifex aeolicus at 1.7A Resolution. J Mol Biol. 2005, 348: 535-547. 10.1016/j.jmb.2005.03.015.
Ireton GC, McDermott G, Black ME, Stoddard BL: The structure of Escherichia coli cytosine deaminase. J Mol Biol. 2002, 315: 687-697. 10.1006/jmbi.2001.5277.
Davies BJ, de Vries N, Rijpkema SG, van Vliet AH, Penn CW: Transcriptional and mutational analysis of the helicobacter pylori urease promoter. FEMS Microbiol Lett. 2002, 213: 27-32. 10.1111/j.1574-6968.2002.tb11281.x.
Xu Z, Liu Y, Yang Y, Jiang W, Arnold E, Ding J: Crystal structure of D-hydantoinase from burkholderia pickettii at a resolution of 2.7 Angstroms: insights into the molecular basis of enzyme thermostability. J Bacteriol. 2003, 185: 4038-4049. 10.1128/JB.185.14.4038-4049.2003.
Vincent F, Yates D, Garman E, Davies GJ, Brannigan JA: The three-dimensional structure of the N-acetylglucosamine-6-phosphate deacetylase, NagA, from bacillus subtilis: a member of the urease superfamily. J Biol Chem. 2004, 279: 2809-2816.
Zhang P, Martin PD, Purcarea C, Vaishnav A, Brunzelle JS, Fernando R, Guy-Evans HI, Evans DR, Edwards BF: Dihydroorotase from the hyperthermophile aquifex aeolicus is activated by stoichiometric association with aspartate transcarbamoylase and forms a one-pot reactor for pyrimidine biosynthesis. Biochemistry. 2009, 48: 766-778. 10.1021/bi801831r.
Evans DR, Guy HI: Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway. J Biol Chem. 2004, 279: 33035-33038. 10.1074/jbc.R400007200.
Zimmermann BH, Evans DR: Cloning, overexpression, and characterization of the functional dihydroorotase domain of the mammalian multifunctional protein CAD. Biochemistry. 1993, 32: 1519-1527. 10.1021/bi00057a016.
Kelly RE, Mally MI, Evans DR: The dihydroorotase domain of the multifunctional protein CAD. Subunit structure, zinc content, and kinetics. J Biol Chem. 1986, 261: 6073-6083.
Zimmermann BH, Kemling NM, Evans DR: Function of conserved histidine residues in mammalian dihydroorotase. Biochemistry. 1995, 34: 7038-7046. 10.1021/bi00021a015.
Huang DT, Thomas MA, Christopherson RI: Divalent metal derivatives of the hamster dihydroorotase domain. Biochemistry. 1999, 38: 9964-9970. 10.1021/bi990859x.
Wang CC, Tsau HW, Chen WT, Huang CY: Identification and characterization of a putative dihydroorotase, KPN01074, from klebsiella pneumoniae. Protein J. 2010, 29: 445-452. 10.1007/s10930-010-9272-2.
Ho YY, Huang YH, Huang CY: Chemical rescue of the post-translationally carboxylated lysine mutant of allantoinase and dihydroorotase by metal ions and short-chain carboxylic acids. Amino Acids. 2013, 44: 1181-1191. 10.1007/s00726-012-1451-3.
Porter TN, Li Y, Raushel FM: Mechanism of the dihydroorotase reaction. Biochemistry. 2004, 43: 16285-16292. 10.1021/bi048308g.
Liao RZ, Yu JG, Raushel FM, Himo F: Theoretical investigation of the reaction mechanism of the dinuclear zinc enzyme dihydroorotase. Chemistry. 2008, 14: 4287-4292. 10.1002/chem.200701948.
Lee M, Chan CW, Graham SC, Christopherson RI, Guss JM, Maher MJ: Structures of ligand-free and inhibitor complexes of dihydroorotase from Escherichia coli: implications for loop movement in inhibitor design. J Mol Biol. 2007, 370: 812-825. 10.1016/j.jmb.2007.05.019.
Krause KL, Volz KW, Lipscomb WN: 2.5 A structure of aspartate carbamoyltransferase complexed with the bisubstrate analog N-(phosphonacetyl)-L-aspartate. J Mol Biol. 1987, 193: 527-553. 10.1016/0022-2836(87)90265-8.
Mehboob S, Mulhearn DC, Truong K, Johnson ME, Santarsiero BD: Structure of dihydroorotase from bacillus anthracis at 2.6 A resolution. Acta Crystallogr Sect F: Struct Biol Cryst Commun. 2002, 66: 1432-1435.
Hall RS, Brown S, Fedorov AA, Fedorov EV, Xu C, Babbitt PC, Almo SC, Raushel FM: Structural diversity within the mononuclear and binuclear active sites of N-acetyl-D-glucosamine-6-phosphate deacetylase. Biochemistry. 2007, 46: 7953-7962. 10.1021/bi700544c.
DiTusa CA, McCall KA, Christensen T, Mahapatro M, Fierke CA, Toone EJ: Thermodynamics of metal ion binding. 2. Metal ion binding by carbonic anhydrase variants. Biochemistry. 2001, 40: 5345-5351. 10.1021/bi0017327.
Kiefer LL, Krebs JF, Paterno SA, Fierke CA: Engineering a cysteine ligand into the zinc binding site of human carbonic anhydrase II. Biochemistry. 1993, 32: 9896-9900. 10.1021/bi00089a004.
Kiefer LL, Paterno SA, Fierke CA: Hydrogen bond network in the metal binding site of carbonic anhydrase enhances zinc affinity and catalytic efficiency. J Am Chem Soc. 1995, 117: 6831-6837. 10.1021/ja00131a004.
Lesburg CA, Christianson DW: X-ray crystallographic studies of engineered hydrogen bond networks in a protein-zinc binding site. J Am Chem Soc. 1995, 117: 6838-6844. 10.1021/ja00131a005.
Lin YL, Lim C: Factors governing the protonation state of Zn-bound histidine in proteins: a DFT/CDM study. J Am Chem Soc. 2004, 126: 2602-2612. 10.1021/ja038827r.
Dudev T, Lim C: Metal binding affinity and selectivity in metalloproteins: insights from computational studies. Annu Rev Biophys. 2008, 37: 97-116. 10.1146/annurev.biophys.37.032807.125811.
Pannetier F, Ohanessian G, Frison G: Comparison between alpha- and beta-carbonic anhydrases: can Zn(His)3(H2O) and Zn(His)(Cys)2(H2O) sites lead to equivalent enzymes?. Dalton Trans. 2011, 40: 2696-2698. 10.1039/c0dt01454k.
Purcarea C, Ahuja A, Lu T, Kovari L, Guy HI, Evans DR: Aquifex aeolicus aspartate transcarbamoylase, an enzyme specialized for the efficient utilization of unstable carbamoyl phosphate at elevated temperature. J Biol Chem. 2003, 278: 52924-52934. 10.1074/jbc.M309383200.
Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, Graham DE, Overbeek R, Snead MA, Keller M, Aujay M, Huber R, Feldman RA, Short JM, Olsen GJ, Swanson RV: The complete genome of the hyperthermophilic bacterium aquifex aeolicus. Nature. 1998, 392: 353-358. 10.1038/32831.
Laemmli U: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 227: 680-685. 10.1038/227680a0.
Lowry O, Rosenbrough N, Farr A, Randall R: Protein measurement with the folin phenol reagent. J Biol Chem. 1951, 193: 265-275.
Prescott LM, Jones ME: Modified methods for the determination of carbamyl aspartate. Anal Biochem. 1969, 32: 408-419. 10.1016/S0003-2697(69)80008-4.
Pastra-Landis SC, Foote J, Kantrowitz ER: An improved colorimetric assay for aspartate and ornithine transcarbamylases. Anal Biochem. 1981, 118: 358-363. 10.1016/0003-2697(81)90594-7.
Christopherson RI, Jones ME: The effects of pH and inhibitors upon the catalytic activity of the dihydroorotase of multienzymatic protein pyr1-3 from mouse Ehrlich ascites carcinoma. J Biol Chem. 1980, 255: 3358-3370.
Sabel CE, Shepherd JL, Siemann S: A direct spectrophotometric method for the simultaneous determination of zinc and cobalt in metalloproteins using 4-(2-pyridylazo)resorcinol. Anal Biochem. 2009, 391: 74-76. 10.1016/j.ab.2009.05.007.
Leslie AGW, Powell HR: Evolving methods for macromolecular crystallography. Nato Sci Ser. 2007, 245: 41-51.
Winn MD: An overview of the CCP4 project in protein crystallography: an example of a collaborative project. J Synchrotron Radiat. 2003, 10: 23-25. 10.1107/S0909049502017235.
Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA: REFMAC5 For the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr. 2011, 67: 355-367. 10.1107/S0907444911001314.
Tickle IJ, Laskowski RA, Moss DS: Rfree and the rfree ratio. I. Derivation of expected values of cross-validation residuals used in macromolecular least-squares refinement. Acta Crystallogr D Biol Crystallogr. 1998, 54: 547-557. 10.1107/S0907444997013875.
Krissinel E, Henrick K: Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr. 2004, 60: 2256-2268. 10.1107/S0907444904026460.
Guex N, Peitsch MC: SWISS-MODEL and the swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997, 18: 2714-2723. 10.1002/elps.1150181505.
DeLano WL: The PyMOL molecular graphics system, Currently supported by Schrödinger, L., Ed. 2002, DeLano Scientific: Palo Alto, CA
Lallous N, Grande-Garcia A, Molina R, Ramon-Maiques S: Expression, purification, crystallization and preliminary X-ray diffraction analysis of the dihydroorotase domain of human CAD. Acta Crystallogr Sect F: Struct Biol Cryst Commun. 2012, 68: 1341-1345. 10.1107/S1744309112038857.