MuRF1 activity is present in cardiac mitochondria and regulates reactive oxygen species production in vivo
Tóm tắt
MuRF1 is a previously reported ubiquitin-ligase found in striated muscle that targets troponin I and myosin heavy chain for degradation. While MuRF1 has been reported to interact with mitochondrial substrates in yeast two-hybrid studies, no studies have identified MuRF1’s role in regulating mitochondrial function to date. In the present study, we measured cardiac mitochondrial function from isolated permeabilized muscle fibers in previously phenotyped MuRF1 transgenic and MuRF1−/− mouse models to determine the role of MuRF1 in intermediate energy metabolism and ROS production. We identified a significant decrease in reactive oxygen species production in cardiac muscle fibers from MuRF1 transgenic mice with increased α-MHC driven MuRF1 expression. Increased MuRF1 expression in ex vivo and in vitro experiments revealed no alterations in the respiratory chain complex I and II function. Working perfusion experiments on MuRF1 transgenic hearts demonstrated significant changes in glucose oxidation. This is an factual error as written; however, total oxygen consumption was decreased. This data provides evidence for MuRF1 as a novel regulator of cardiac ROS, offering another mechanism by which increased MuRF1 expression may be cardioprotective in ischemia reperfusion injury, in addition to its inhibition of apoptosis via proteasome-mediate degradation of c-Jun. The lack of mitochondrial function phenotype identified in MuRF1−/− hearts may be due to the overlapping interactions of MuRF1 and MuRF2 with energy regulating proteins found by yeast two-hybrid studies reported here, implying a duplicity in MuRF1 and MuRF2’s regulation of mitochondrial function.
Tài liệu tham khảo
Agarwala GC (1979) Effect of intracisternal injection of ACTH on blood glucose and hepatic glycogen in dogs. Indian J Physiol Pharmacol 23(4):297–304
Anderson EJ, Yamazaki H, Neufer PD (2007) Induction of endogenous uncoupling protein 3 suppresses mitochondrial oxidant emission during fatty acid-supported respiration. [Comparative Study]. J Biol Chem 282(43):31257–31266. doi:10.1074/jbc.M706129200
Anderson EJ, Rodriguez E, Anderson CA, Thayne K, Chitwood WR, Kypson AP (2011) Increased propensity for cell death in diabetic human heart is mediated by mitochondrial-dependent pathways. [Research Support, N.I.H., Extramural]. Am J Physiol Heart Circ Physiol 300(1):H118–H124. doi:10.1152/ajpheart.00932.2010
Anderson EJ, Thayne K, Harris M, Carraway K, Shaikh SR (2012) Aldehyde stress and up-regulation of Nrf2-mediated antioxidant systems accompany functional adaptations in cardiac mitochondria from mice fed n-3 polyunsaturated fatty acids. [Research Support, N.I.H., Extramural]. Biochem J 441(1):359–366. doi:10.1042/BJ20110626
Arya R, Kedar V, Hwang JR, McDonough H, Li HH, Taylor J et al (2004) Muscle ring finger protein-1 inhibits PKC{epsilon} activation and prevents cardiomyocyte hypertrophy. J Cell Biol 167(6):1147–1159. doi:10.1083/jcb.200402033
Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA et al (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294(5547):1704–1708. doi:10.1126/science.1065874
Bray MS, Shaw CA, Moore MW, Garcia RA, Zanquetta MM, Durgan DJ et al (2008) Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression. Am J Physiol Heart Circ Physiol 294(2):H1036–H1047. doi:10.1152/ajpheart.01291.2007
Cadenas E, Boveris A, Ragan CI, Stoppani AO (1977) Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch Biochem Biophys 180(2):248–257
Centner T, Yano J, Kimura E, McElhinny AS, Pelin K, Witt CC et al (2001) Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. J Mol Biol 306(4):717–726. doi:10.1006/jmbi.2001.4448
Chen Y, Dorn GW 2nd (2013) PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. [Research Support, N.I.H., Extramural]. Science 340(6131):471–475. doi:10.1126/science.1231031
Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. [Comparative Study Research Support, Non-U.S. Gov’t]. Eur J Biochem 241(3):779–786
Claycomb WC, Lanson NA Jr, Stallworth BS, Egeland DB, Delcarpio JB, Bahinski A et al (1998) HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci U S A 95(6):2979–2984
Fielitz J, Kim MS, Shelton JM, Latif S, Spencer JA, Glass DJ et al (2007) Myosin accumulation and striated muscle myopathy result from the loss of muscle RING finger 1 and 3. J Clin Invest 117(9):2486–2495
Fontaine E, Eriksson O, Ichas F, Bernardi P (1998) Regulation of the permeability transition pore in skeletal muscle mitochondria. Modulation by electron flow through the respiratory chain complex i. J Biol Chem 273(20):12662–12668
Guzy RD, Sharma B, Bell E, Chandel NS, Schumacker PT (2008) Loss of the SdhB, but not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Mol Cell Biol 28(2):718–731. doi:10.1128/MCB.01338-07
Jeon HB, Choi ES, Yoon JH, Hwang JH, Chang JW, Lee EK et al (2007) A proteomics approach to identify the ubiquitinated proteins in mouse heart. Biochem Biophys Res Commun 357(3):731–736. doi:10.1016/j.bbrc.2007.04.015
Kamimura M, Matsumoto K, Koshiba-Takeuchi K, Ogura T (2004) Vertebrate crossveinless 2 is secreted and acts as an extracellular modulator of the BMP signaling cascade. [Research Support, Non-U.S. Gov’t]. Dev Dyn 230(3):434–445. doi:10.1002/dvdy.20069
Karbowski M, Neutzner A, Youle RJ (2007) The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J Cell Biol 178(1):71–84. doi:10.1083/jcb.200611064
Kedar V, McDonough H, Arya R, Li HH, Rockman HA, Patterson C (2004) Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Proc Natl Acad Sci U S A 101(52):18135–18140. doi:10.1073/pnas.0404341102
Kimes BW, Brandt BL (1976) Properties of a clonal muscle cell line from rat heart. Exp Cell Res 98(2):367–381
Koyama S, Hata S, Witt CC, Ono Y, Lerche S, Ojima K et al (2008) Muscle RING-finger protein-1 (MuRF1) as a connector of muscle energy metabolism and protein synthesis. J Mol Biol 376(5):1224–1236. doi:10.1016/j.jmb.2007.11.049
Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA, Orth A et al (2008) Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS One 3(1):e1487. doi:10.1371/journal.pone.0001487
Li HH, Du J, Fan YN, Zhang ML, Liu DP, Li L et al (2011) The ubiquitin ligase MuRF1 protects against cardiac ischemia/reperfusion injury by its proteasome-dependent degradation of phospho-c-Jun. Am J Pathol 178(3):1043–1058. doi:10.1016/j.ajpath.2010.11.049
Liu Y, Fiskum G, Schubert D (2002) Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem 80(5):780–787
Livnat-Levanon N, Glickman MH (2011) Ubiquitin-proteasome system and mitochondria - reciprocity. [Research Support, Non-U.S. Gov’t Review]. Biochim Biophys Acta 1809(2):80–87. doi:10.1016/j.bbagrm.2010.07.005
McElhinny AS, Kakinuma K, Sorimachi H, Labeit S, Gregorio CC (2002) Muscle-specific RING finger-1 interacts with titin to regulate sarcomeric M-line and thick filament structure and may have nuclear functions via its interaction with glucocorticoid modulatory element binding protein-1. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. J Cell Biol 157(1):125–136. doi:10.1083/jcb.200108089
Nakamura N, Kimura Y, Tokuda M, Honda S, Hirose S (2006) MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep 7(10):1019–1022. doi:10.1038/sj.embor.7400790
Narendra DP, Youle RJ (2011) Targeting mitochondrial dysfunction: role for PINK1 and Parkin in mitochondrial quality control. [Research Support, N.I.H., Intramural Review]. Antioxid Redox Signal 14(10):1929–1938. doi:10.1089/ars.2010.3799
Neuspiel M, Schauss AC, Braschi E, Zunino R, Rippstein P, Rachubinski RA et al (2008) Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Curr Biol 18(2):102–108. doi:10.1016/j.cub.2007.12.038
Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE et al (2008) A mitochondrial protein compendium elucidates complex I disease biology. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Cell 134(1):112–123. doi:10.1016/j.cell.2008.06.016
Paradies G, Petrosillo G, Pistolese M, Di Venosa N, Federici A, Ruggiero FM (2004) Decrease in mitochondrial complex I activity in ischemic/reperfused rat heart: involvement of reactive oxygen species and cardiolipin. Circ Res 94(1):53–59. doi:10.1161/01.RES.0000109416.56608.64
Quinlan CL, Orr AL, Perevoshchikova IV, Treberg JR, Ackrell BA, Brand MD (2012) Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J Biol Chem 287(32):27255–27264. doi:10.1074/jbc.M112.374629
Saks VA, Veksler VI, Kuznetsov AV, Kay L, Sikk P, Tiivel T et al (1998) Permeabilized cell and skinned fiber techniques in studies of mitochondrial function in vivo. [Research Support, Non-U.S. Gov’t]. Mol Cell Biochem 184(1–2):81–100
Sloan RC, Moukdar F, Frasier CR, Patel HD, Bostian PA, Lust RM et al (2012) Mitochondrial permeability transition in the diabetic heart: contributions of thiol redox state and mitochondrial calcium to augmented reperfusion injury. [In Vitro Research Support, Non-U.S. Gov’t]. J Mol Cell Cardiol 52(5):1009–1018. doi:10.1016/j.yjmcc.2012.02.009
Tang F, Wang B, Li N, Wu Y, Jia J, Suo T et al (2011) RNF185, a novel mitochondrial ubiquitin E3 ligase, regulates autophagy through interaction with BNIP1. PLoS One 6(9):e24367. doi:10.1371/journal.pone.0024367
Taylor SW, Fahy E, Zhang B, Glenn GM, Warnock DE, Wiley S et al (2003) Characterization of the human heart mitochondrial proteome. Nat Biotechnol 21(3):281–286. doi:10.1038/nbt793
Tsien RY (1989) Fluorescent indicators of ion concentrations. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review]. Methods Cell Biol 30:127–156
Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191(2):421–427
Vance JE (1990) Phospholipid synthesis in a membrane fraction associated with mitochondria. [Research Support, Non-U.S. Gov’t]. J Biol Chem 265(13):7248–7256
Wadosky KM, Rodriguez JE, Hite RL, Min JN, Walton B, Willis MS (2014) Muscle RING Finger-1 attenuates IGF-1-dependent cardiomyocyte hypertrophy by Inhibiting JNK signaling. Am J Physiol Endocrinol Metab. doi:10.1152/ajpendo.00326.2013
Willis MS, Ike C, Li L, Wang DZ, Glass DJ, Patterson C (2007) Muscle ring finger 1, but not muscle ring finger 2, regulates cardiac hypertrophy in vivo. Circ Res 100(4):456–459. doi:10.1161/01.RES.0000259559.48597.32
Willis MS, Li HH, Rodriguez JE, Li L, Rojas M, Lockyer P et al (2008) MuRF1 inhibits JNK signaling in cardiac ischemia reperfusion injury by degrading phosphorylated cJun. FASEB J 22:751.711
Willis MS, Rojas M, Li L, Selzman CH, Tang RH, Stansfield WE et al (2009a) Muscle ring finger 1 mediates cardiac atrophy in vivo. Am J Physiol Heart Circ Physiol 296(4):H997–H1006. doi:10.1152/ajpheart.00660.2008
Willis MS, Schisler JC, Li L, Rodriguez JE, Hilliard EG, Charles PC et al (2009b) Cardiac muscle ring finger-1 increases susceptibility to heart failure in vivo. Circ Res 105(1):80–88. doi:10.1161/CIRCRESAHA.109.194928
Willis MS, Zungu M, Patterson C (2010) Cardiac muscle ring finger-1–friend or foe? Trends Cardiovasc Med 20(1):12–16. doi:10.1016/j.tcm.2010.03.001
Willis MS, Wadosky KM, Rodriguez JE, Schisler JC, Lockyer P, Hilliard EG et al (2013) Muscle ring finger 1 and muscle ring finger 2 are necessary but functionally redundant during developmental cardiac growth and regulate E2F1-mediated gene expression in vivo. Cell Biochem Funct. doi:10.1002/cbf.2969
Witt SH, Granzier H, Witt CC, Labeit S (2005) MURF-1 and MURF-2 target a specific subset of myofibrillar proteins redundantly: towards understanding MURF-dependent muscle ubiquitination. J Mol Biol 350(4):713–722. doi:10.1016/j.jmb.2005.05.021
Witt CC, Witt SH, Lerche S, Labeit D, Back W, Labeit S (2008) Cooperative control of striated muscle mass and metabolism by MuRF1 and MuRF2. EMBO J 27(2):350–360. doi:10.1038/sj.emboj.7601952
Yonashiro R, Ishido S, Kyo S, Fukuda T, Goto E, Matsuki Y et al (2006) A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J 25(15):3618–3626. doi:10.1038/sj.emboj.7601249
Yonashiro R, Kimijima Y, Shimura T, Kawaguchi K, Fukuda T, Inatome R et al (2012) Mitochondrial ubiquitin ligase MITOL blocks S-nitrosylated MAP1B-light chain 1-mediated mitochondrial dysfunction and neuronal cell death. [Research Support, Non-U.S. Gov’t]. Proc Natl Acad Sci U S A 109(7):2382–2387. doi:10.1073/pnas.1114985109
Zhang L, Yu L, Yu CA (1998) Generation of superoxide anion by succinate-cytochrome c reductase from bovine heart mitochondria. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. J Biol Chem 273(51):33972–33976
Zhang J, Li X, Mueller M, Wang Y, Zong C, Deng N et al (2008) Systematic characterization of the murine mitochondrial proteome using functionally validated cardiac mitochondria. [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Proteomics 8(8):1564–1575. doi:10.1002/pmic.200700851
Zhao TJ, Yan YB, Liu Y, Zhou HM (2007) The generation of the oxidized form of creatine kinase is a negative regulation on muscle creatine kinase. J Biol Chem 282(16):12022–12029. doi:10.1074/jbc.M610363200
Zungu M, Schisler J, Willis MS (2011) All the little pieces. -Regulation of mitochondrial fusion and fission by ubiquitin and small ubiquitin-like modifer and their potential relevance in the heart. [Research Support, N.I.H., Extramural Review]. Circ J 75(11):2513–2521