La2O3: Tm, Yb, Er upconverting nano-oxides for sub-tissue lifetime thermal sensing
Tài liệu tham khảo
Tardieu, 2000, Spatial distributions of expansion rate, cell division rate and cell size in maize leaves: a synthesis of the effects of soil water status, evaporative demand and temperature, J. Exp. Bot., 51, 1505, 10.1093/jexbot/51.350.1505
Somero, 1995, Proteins and temperature, Annu. Rev. Physiol., 57, 43, 10.1146/annurev.ph.57.030195.000355
Haro-Gonzalez, 2012, High-sensitivity fluorescence lifetime thermal sensing based on CdTe quantum dots, Small, 8, 2652, 10.1002/smll.201102736
Donner, 2012, Mapping intracellular temperature using green fluorescent protein, Nano Lett., 12, 2107, 10.1021/nl300389y
Okabe, 2012, Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy, Nat. Commun., 3, 705, 10.1038/ncomms1714
Savchuk, 2014, Er:Yb:NaY2F5O up-converting nanoparticles for sub-tissue fluorescence lifetime thermal sensing, Nanoscale, 6, 9727, 10.1039/C4NR02305F
Jaque, 2012, Luminescence nanothermometry, Nanoscale, 4, 4301, 10.1039/c2nr30764b
Haro-Gonzalez, 2012, Evaluation of rare earth doped silica sub-micrometric spheres as optically controlled temperature sensors, J. Appl. Phys., 112, 054702, 10.1063/1.4751349
Auzel, 1990, Upconversion processes in coupled ion systems, J. Lumin., 45, 341, 10.1016/0022-2313(90)90189-I
Gargas, 2014, Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging, Nat. Nanotechnol., 9, 300, 10.1038/nnano.2014.29
Ding, 2015, Hexagonal NaYF4:Yb3+/Er3+ nano/micro-structures: controlled hydrothermal synthesis and morphology-dependent upconversion luminescence, Appl. Surf. Sci., 333, 23, 10.1016/j.apsusc.2015.01.240
Dey, 2014, Yb3+ sensitized Er3+ doped La2O3 phosphor in temperature sensors and display devices, Dalton Trans., 43, 111, 10.1039/C3DT51773J
Xu, 2013, Synthesis of hollow La2O3:Yb3+/Er3+/Tm3+ microspheres with tunable up-conversion luminescence properties, RSC Adv., 3, 8407, 10.1039/c3ra40414e
Martin, 1999, Upconversion dynamics in Er3+-doped fluoroindate glasses, Spectrochim. Acta A, 55, 935, 10.1016/S1386-1425(98)00190-5
Martin, 1998, Upconversion dynamics in Yb3+-Ho3+ doped fluoroindate glasses, J. Alloy. Compd., 275, 345, 10.1016/S0925-8388(98)00336-3
Hao, 2013, Sensing using rare-Earth-doped upconversion nanoparticles, Theranostics, 3, 331, 10.7150/thno.5305
Wang, 2010, Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping, Nature, 463, 1061, 10.1038/nature08777
Zhengquan, 2008, An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4:Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence, Nanotechnology, 19
Chen, 2012, (a-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging, ACS Nano, 6, 8280, 10.1021/nn302972r
Chen, 2013, Preparation and photodynamic therapy application of NaYF4:Yb, Tm-NaYF4:Yb, Er multifunctional upconverting nanoparticles, New J. Chem., 37, 1782, 10.1039/c3nj00065f
Shen, 2013, Tunable near infrared to ultraviolet upconversion luminescence enhancement in (a-NaYF4:Yb, Tm)/CaF2 core/shell nanoparticles for in situ real-time recorded biocompatible photoactivation, Small, 9, 3213, 10.1002/smll.201370117
Xu, 2015, A-NaYb(Mn)F4:Er3+/Tm3+@NaYF4 UCNPs as band-shape luminescent nanothermometers over a wide temperature range, ACS Appl. Mater. Interfaces, 7, 20813, 10.1021/acsami.5b05876
Dong, 2011, NIR-to-NIR two-photon excited CaF2: Tm3+, Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-Imaging, ACS Nano, 5, 8665, 10.1021/nn202490m
Wang, 2013, Optical temperature sensing of NaYbF4: Tm3+ @ SiO2 core-shell micro-particles induced by infrared excitation, Opt. Express, 21, 21596, 10.1364/OE.21.021596
Li, 2015, Ho3+ (or Tm3+)-activated upconversion nanomaterials: anomalous temperature dependence of upconversion luminescence and applications in multicolor temperature indicating and security, Part. Part. Syst. Charact., 32, 728, 10.1002/ppsc.201500004
Dong, 2012, Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-Earth oxides, Adv. Mater., 24, 1987, 10.1002/adma.201200431
He, 2011, Preparation and up-conversion luminescence of hollow La2O3:Ln (Ln=Yb/Er, Yb/Ho) microspheres, Langmuir, 27, 5616, 10.1021/la200506q
Li, 2012, Multiform La2O3: Yb3+/Er3+/Tm3+ submicro-/microcrystals derived by hydrothermal process: morphology control and tunable upconversion luminescence properties, CrystEngComm, 14, 2100, 10.1039/c2ce06248h
Méndez, 2012, Effect of thermal annealing on the kinetics of rehydroxylation of Eu3+:La2O3 nanocrystals, Inorg. Chem., 51, 6139, 10.1021/ic300108f
Shang, 2011, Investigation on the luminescence improvement of nanosized La2O3/Eu3+ phosphor under charge-transfer excitation, J. Phys. Chem. C, 115, 2630, 10.1021/jp108608f
Li, 2010, Eu3+/Tb3+ doped La2O2CO3/La2O3 nano/microcrystals with multiform morphologies: facile synthesis, growth mechanism, and luminescence properties, Inorg. Chem., 49, 10522, 10.1021/ic101541q
Zhang, 2012, La(OH)3:Ln3+ and La2O3:Ln3+ (Ln=Yb/Er, Yb/Tm, Yb/Ho) microrods: synthesis and up-conversion luminescence properties, Cryst. Growth Des., 12, 306, 10.1021/cg201091u
Pollnau, 2000, Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems, Phys. Rev. B, 61, 3337, 10.1103/PhysRevB.61.3337
Chamarro, 1988, Energy up-conversion in (Yb, Ho) and (Yb, Tm) doped fluorohafnate glasses, J. Lumin., 42, 267, 10.1016/0022-2313(88)90054-3
Zhang, 2010, Infrared luminescence of Tm3+/Yb3+ codoped lanthanum aluminum germanate glasses, J. Appl. Phys., 107, 023102, 10.1063/1.3289589
Liu, 2009, Tri-color upconversion luminescence of Rare earth doped BaTiO3 nanocrystals and lowered color separation, Opt. Express, 17, 9089, 10.1364/OE.17.009089
Nakazawa, 1999
Sovers, 1968, Fluorescence of trivalent‐turopium‐doped yttrium oxysulfide, J. Chem. Phys., 49, 4945, 10.1063/1.1669982
Allison, 2003, Nanoscale thermometry via the fluorescence of YAG:Ce phosphor particles: measurements from 7 to 77°C, Nanotechnology, 14, 859, 10.1088/0957-4484/14/8/304
Fonger, 1970, Eu+3 5D resonance quenching to the charge‐transfer states in Y2O2S, La2O2S, and LaOCl, J. Chem. Phys., 52, 6364, 10.1063/1.1672952
Suzuki, 2011, Low-yemperature flux growth and upconversion fluorescence of the idiomorphic hexagonal-system NaYF4 and NaYF4:Ln (Ln=Yb, Er, Tm) crystals, Cryst. Growth Des., 11, 4825, 10.1021/cg200580z
Lü, 2008, White up-conversion luminescence in rare-Earth-Ion-doped YAlO3 nanocrystals, J. Phys. Chem. C, 112, 15071, 10.1021/jp805205v
Erdem, 2015, Bright white up-conversion emission from sol–gel derived Yb3+/Er3+/Tm3+: Y2SiO5 nanocrystalline powders, Ceram. Int., 41, 12805, 10.1016/j.ceramint.2015.06.116
Chen, 2012, Red, green, blue and bright white upconversion luminescence of CaTiO3: Er3+/Tm3+/Yb3+ nanocrystals, J. Alloys Compd., 541, 505, 10.1016/j.jallcom.2012.07.008
Patra, 2005, Blue upconversion emission of Tm3+–Yb3+ in ZrO2 nanocrystals: role of Yb3+ ions, Chem. Phys. Lett., 407, 477, 10.1016/j.cplett.2005.03.135
Brites, 2011, Lanthanide-based luminescent molecular thermometers, New J. Chem., 35, 1177, 10.1039/c0nj01010c
Nikolić, 2014, Temperature sensing with Eu3+ doped TiO2 nanoparticles, Sens. Actuators: B, 201, 46, 10.1016/j.snb.2014.04.108
Yap, 2008, Decay time characteristics of La2O2S:Eu and La2O2S:Tb for use within an optical sensor for human skin temperature measurement, Appl. Opt., 47, 4895, 10.1364/AO.47.004895
Rao, 2013, A highly sensitive mixed lanthanide metal-organic framework self-calibrated luminescent thermometer, J. Am. Chem. Soc., 135, 15559, 10.1021/ja407219k
Dietzel, 2005, An in situ high-temperature single-crystal investigation of a dehydrated metal–organic framework compound and field-Induced magnetization of one-dimensional metal–oxygen chains, Angew. Chem., 117, 6512, 10.1002/ange.200501508
Jayakumar, 2012, Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers, Proc. Natl. Acad. Sci. U. S. A., 109, 8483, 10.1073/pnas.1114551109