Functional Human Corneal Equivalents Constructed from Cell Lines

American Association for the Advancement of Science (AAAS) - Tập 286 Số 5447 - Trang 2169-2172 - 1999
May Griffith1, Rosemarie Osborne2, Réjean Munger1, Xiaojuan Xiong1, Charles J. Doillon3, Noelani Laycock1, M. Obaidul Hakim1, Ying Song1, Mitchell A. Watsky4
1University of Ottawa Eye Institute and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa Hospital–General Campus, Ottawa, Ontario K1H 8L6, Canada.
2Human & Environmental Safety Division, Procter & Gamble Company, Miami Valley Laboratories, Cincinnati, OH 45253, USA.
3Biomaterials Institute of Quebec, Pavillon St. Francois d'Assise, Centre Hospitalier et Universitaire de Quebec, Quebec G1L 3L5, Canada.
4Department of Physiology, University of Tennessee College of Medicine, Memphis, TN 38163, USA.

Tóm tắt

Human corneal equivalents comprising the three main layers of the cornea (epithelium, stroma, and endothelium) were constructed. Each cellular layer was fabricated from immortalized human corneal cells that were screened for use on the basis of morphological, biochemical, and electrophysiological similarity to their natural counterparts. The resulting corneal equivalents mimicked human corneas in key physical and physiological functions, including morphology, biochemical marker expression, transparency, ion and fluid transport, and gene expression. Morphological and functional equivalents to human corneas that can be produced in vitro have immediate applications in toxicity and drug efficacy testing, and form the basis for future development of implantable tissues.

Từ khóa


Tài liệu tham khảo

D. G. Pitts in Environmental Vision D. E. Pitts and R. N. Kleinstein Eds. (Butterworth-Heinemann Boston 1994) chap. 6.

Jager M. J., et al., Eye 9, 241 (1995).

Minami Y., Sugihara H., Oono S., Invest. Ophthalmol. Visual Sci. 34, 2316 (1993);

Zieske J. D., et al., Exp. Cell Res. 214, 621 (1994);

Kahn C. R., Young E., Lee I. H., Rhim J. S., Invest. Ophthalmol. Visual Sci. 34, 1983 (1993) ;

Araki-Sasaki K., et al., Invest. Ophthalmol. Visual Sci. 36, 614 (1995);

Germain L., et al., Pathobiology 67, 140 (1999).

“Immortalized cells” are cells with extended life-spans that retain characteristics of low-passage or freshly dissociated cells (contact inhibition substrate-dependent growth but no senescence or culture-related phenotypic changes after 8 to 10 passages).

Halbert C. L., Demers G. W., Galloway D. A., J. Virol. 65, 473 (1991);

; J. Virol. 66 2125 (1992). Viral producer cell line PA317LXSN 16E6E7 (American Type Culture Collection) was used.

Rhim J. S., et al., Carcinogenesis 19, 673 (1998).

R. E. Kingston in Current Protocols Molecular Biology F. M. Ausubel et al. Eds. (Wiley New York 1997) pp. 9.0.1–9.1.11.

Bryan T. M., Reddel R. R., Crit. Rev. Oncog. 5, 331 (1994);

Southern P. J., Berg P., J. Mol. Appl. Genet. 1, 327 (1982).

Graham F. L., van der Eb A. J., Virology 52, 456 (1973);

Quinlan M. P., Oncogene 9, 2639 (1994).

Cytogenetic analyses were performed by H. S. Wang (Cytogenetics Laboratory Children's Hospital of Eastern Ontario Ottawa) using routine G-banding techniques with 400- to 450-band resolution.

Pettenati M. J., et al., Hum. Genet. 101, 26 (1997).

TeloQuant Telomeric Repeat Amplification Protocol kit (Pharmingen Canada).

Rae J. L., Cooper K. E., Gates P., Watsky M. A., Br. J. Neurosci. Methods 37, 15 (1991).

Bockman C., Griffith C. M., Watsky M. A., Invest. Ophthalmol. Visual Sci. 39, 1143 (1998).

Epithelial cells showed corneal epithelial-specific keratin 12 staining [

Schermer A., Galvin S., Sun T. T., J. Cell Biol. 103, 49 (1986);

] with AE5 antibody (ICN Biochemicals Aurora OH). Stromal cells stained for vimentin (Roche Diagnostics Montreal). Endothelial cells expressed α2(VIII) collagen mRNA [

Muragaki Y., et al., J. Biol. Chem. 266, 7721 (1991);

] and lacked keratin 12 staining.

Bell E., Ehrlich H. P., Buttle D. J., Nakatsuji T., Science 211, 1052 (1981);

; M. S. Shoichet and J. A. Hubell Eds. Polymers for Tissue Engineering (VSP Utrecht Netherlands 1998).

Cell lines producing successful constructs were from young donors were immortalized with HPV E6/E7 and had appropriate electrophysiological responses.

M. Griffith et al. in preparation.

Kao W. W. Y., Berg R. A., Prockop D. J., Biochim. Biophys. Acta 411, 202 (1975);

Doillon C. J., Silver F. H., Berg R. A., Biomaterials 8, 195 (1987).

M. Griffith et al. unpublished data.

Janvier R., Sourla A., Koutsilieris M., Doillon C. J., Anticancer Res. 17, 1551 (1997).

M. A. Watsky T. W. Olsen H. F. Edelhauser in Duane's Foundations of Clinical Ophthalmology B. Tasman and E. Jaeger Eds. (Lippincott Philadelphia 1995) vol. 2 chap. 4.

D. H. Geroski J. C. Kies and H. F. Edelhauser [ Curr. Eye Res. 3 331 (1984)] showed that 100 μM ouabain causes swelling of human corneas (41 μm per hour); after 2 hours corneas would swell by 82 μm (16%).

Constructs with epithelium sealed with silicone oil to prevent movement of water across the anterior surface were measured using OCT (Zeiss-Humphrey San Leandro CA). The average change in thickness was calculated from four to six measurements before and after treatment of the endothelial surface for 2 hours with 100 μM ouabain or Dulbecco's modified Eagle's medium alone (DMEM Gibco).

Corneal equivalents and human eye bank corneas were treated with 5% SDS or medium 199 alone (controls) for 3 min. After a 1-hour recovery period total RNA was extracted and mRNA was reverse-transcribed. Specific cDNA was amplified by PCR using Taq polymerase (Gibco) and primer pairs specific for human nucleotide sequences [for c -fos sense (S): 5′-CTTCAACGCAGACTACGAGG antisense (A): 5′-CTGTCATGGTCTTCACAACG; for IL-1α S: 5′-ATCCTGAATGACGCCCTCAA A: 5′-GGATGGGCAACTGATGTGAA; for IL-6 S: 5′-AATTCGGTACATCCTCGACG A: 5′-GCGCAGAATGAGATGAGTTG; for bFGF ( FGF-2 ) S: 5′-GAGAAGAGCGACCCTCACA A: 5′-TAGCTTTCTGCCCAGGTCC; for VEGF S: 5′-ACTTTCTGCTGTCTTGGGTG A: 5′-TGCTGTAGGAAGCTCATCTC; for Coll I S: 5′-GGTGATGCTGGTCCTGTT A: 5′-GTCCTTGGGGTTCTTGCT]. 18 S rRNA primers and Competimers (QuantumRNA 18 Internal Standards Kit; Ambion Austin TX) were introduced into the PCR mixture and 18 S RNA was amplified together with the gene-specific cDNA and primers within the linear amplification range to provide internal standards for quantifying relative differences in gene expression [W. C. Gause and J. Adamovicz in PCR Primer: A Laboratory Manual C. W. Dieffenbach Ed. (Cold Spring Harbor Laboratory Press Plainview NY 1995)]. PCR products were sequenced to confirm identities. To increase the sensitivity we transferred PCR products separated by agarose gel electrophoresis to Southern (DNA) blot substrate and hybridized them with [ 32 P]deoxycytidine triphosphate–labeled specific probes. Quantification was performed on a Molecular Dynamics Storm Phosphorimager.

Draize J. H., Woodard G., Calvery H. O., J. Pharmacol. Exp. Ther. 82, 377 (1944);

Griffith J. F., Nixon G. A., Bruce R. D., Reer P. J., Bannan E. A., Toxicol. Appl. Pharmacol. 55, 501 (1980).

c -fos :

Okada Y., et al., Graefes Arch. Clin. Exp. Ophthalmol. 236, 853 (1998);

; IL-1 and IL-6:

Sotozono C., et al., Curr. Eye Res. 16, 670 (1997);

; bFGF:

Hoppenreijs V. P. T., Pels E., Vrensen G. F. J. M., Treffers W. F., Invest. Ophthalmol. Visual Sci. 35, 931 (1994);

; VEGF:

Amano S., Roban R., Kuroki M., Tolentino M., Adamis A. P., Invest. Ophthalmol. Visual Sci. 39, 18 (1998);

; Coll I:

Power W. J., Kaufman A. H., Merayo-Lloves J., Arrunategui-Correa V., Foster C. S., Curr. Eye Res. 14, 879 (1995).

Live/Dead Viability/Cytotoxicity kit (Molecular Probes Eugene OR).

Corneal equivalents rabbit corneas (PelFreez Rogers AR) and human eye bank corneas 1 to 4 weeks post-enucleation (Eye Bank of Canada Toronto) were treated with 100 μl of coded test substance for 5 min then rinsed with phosphate-buffered saline. Transmission measurements were made with a custom-built instrument [

Priest D., Munger R., Invest. Ophthalmol. Visual Sci. 39, S352 (1998);

] before ( T 1 ) and after ( T 2 ) chemical exposure. Responses were plotted as normalized change in transmission CT n = [( T 1 − T 2 )/ T 2 ] × 100 and compared within and across species using analysis of variance (ANOVA).

International Life Sciences Institute J. Toxicol. Cutaneous Ocul. Toxicol. 15 211 (1996).

Supported by grants from the Natural Sciences and Engineering Research Council of Canada Medical Research Council–Pharmaceutical Manufacturers' Association of Canada and the P&G International Program for Animal Alternatives. We thank S. Whelan and P. Berg for Ad5 and psv3neo plasmids C. Smith and Ottawa Hospital Research Institute colleagues and E. Hay and A. Tashjian Jr. for helpful insights during preparation of this manuscript.