Climatic benefits of black carbon emission reduction when India adopts the US on-road emission level
Tóm tắt
India is known to emit large amounts of black carbon (BC) particles, and the existing estimates of the BC emission from the transport sector in the country widely range from 72 ~ 456 Gg/year (for the 2000’s). First, we reduce the uncertainty range by constraining the existing estimates by credible isotope analysis results. The revised estimate is from 74 ~ 254 Gg/year. Second, we derive our own BC estimate of the transport section in order to gain a new insight into the mitigation strategy and value. Our estimate shows that the transport section BC emission would be reduced by about 69 % by adopting the US standards. The highest emission reduction comes from the vehicles in the 5–10 year old age group. The minimum emission reduction would be achieved from the vehicles in the 15–20 year old age category since their population is comparatively small in comparison to other age categories. The 69 % of 74 ~ 254 Gg/year is 51 ~ 175 Gg/year, which is the estimated BC emission reduction by switching to the US on-road emission standard. Assuming that global BC radiative forcing is 0.88 Wm−2 for 17.8 Tg/year of BC emission, we find that the reduced BC emission translates into −0.0025 ~ −0.0087 W m−2 in global forcing. In addition, we find that 51 ~ 175 Gg of BC emission reduction amounts to 0.046 – 0.159 B carbon credits which are valued at 0.56 – 1.92 B US dollars (using today’s carbon credit price). In a nutshell, India could potentially earn billions of dollars per year by switching from the current on-road emission levels to the US levels.
Tài liệu tham khảo
Andreae M, Gelencsér A (2006) Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos Chem Phys 6(10):3131–3148
Lamarque J-F, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, Lee D, Liousse C, Mieville A, Owen B (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10(15):7017–7039
Novakov T, Ramanathan V, Hansen J, Kirchstetter T, Sato M, Sinton J, Sathaye J: Large historical changes of fossil‐fuel black carbon aerosols. Geophysical Res Letters 2003, 30(6). doi:10.1029/2002GL016345.
Chung CE, Ramanathan V, Decremer D (2012) Observationally constrained estimates of carbonaceous aerosol radiative forcing. Proc Natl Acad Sci 109(29):11624–11629
Ramanathan V, Xu Y (2010) The Copenhagen accord for limiting global warming: criteria, constraints, and available avenues. Proc Natl Acad Sci 107(18):8055–8062
Shindell D, Kuylenstierna JC, Vignati E, van Dingenen R, Amann M, Klimont Z, Anenberg SC, Muller N, Janssens-Maenhout G, Raes F (2012) Simultaneously mitigating near-term climate change and improving human health and food security. Science 335(6065):183–189
Bond TC, Streets DG, Yarber KF, Nelson SM, Woo JH, Klimont Z: A technology‐based global inventory of black and organic carbon emissions from combustion. J Geophysical Res Atmospheres (1984–2012) 2004, 109(D14). doi:10.1029/2003JD003697.
Myhre G, Bellouin N, Berglen TF, Berntsen TK, Boucher O, Grini A, Isaksen IS, Johnsrud M, Mishchenko MI, Stordal F (2007) Comparison of the radiative properties and direct radiative effect of aerosols from a global aerosol model and remote sensing data over ocean. Tellus B 59(1):115–129
Stier P, Seinfeld JH, Kinne S, Boucher O (2007) Aerosol absorption and radiative forcing. Atmos Chem Phys 7(19):5237–5261
Bond TC, Doherty SJ, Fahey D, Forster P, Berntsen T, DeAngelo B, Flanner M, Ghan S, Kärcher B, Koch D (2013) Bounding the role of black carbon in the climate system: A scientific assessment. J Geophysical Res Atmospheres 118(11):5380–5552
Kroeger T: Black Carbon Emissions in Asia: Sources, Impacts and Abatement Opportunities. Contractor Report Prepared by International Resources Group for USAID, ECO-Asia Clean Development and Climate Program USAID Regional Development Mission for Asia. USAID: Bangkok, Thailand 2010.
Liggio J, Gordon M, Smallwood G, Li S-M, Stroud C, Staebler R, Lu G, Lee P, Taylor B, Brook JR (2012) Are emissions of black carbon from gasoline vehicles underestimated? Insights from near and on-road measurements. Environ sci Technol 46(9):4819–4828
Minjares R, Wagner D, Baral A, Chambliss S, Galarza S, Posada F, SHARPE B, Wu G, Blumberg K, Kamakate F (2014) Reducing black carbon emissions from diesel vehicles: impacts, control strategies, and cost-benefit analysis. The World Bank
Garg A, Shukla P, Bhattacharya S, Dadhwal V (2001) Sub-region (district) and sector level SO< sub > 2</sub > and NO< sub > x</sub > emissions for India: assessment of inventories and mitigation flexibility. Atmos Environ 35(4):703–713
LU J (2011) Environmental Effects of Vehicle Exhausts, Global and Local Effects: A Comparison between Gasoline and Diesel. Thesis, Halmstad University
Klimont Z, Cofala J, Xing J, Wei W, Zhang C, Wang S, Kejun J, Bhandari P, Mathur R, Purohit P (2009) Projections of SO2, NOx and carbonaceous aerosols emissions in Asia. Tellus B 61(4):602–617
Sahu S, Beig G, Sharma C: Decadal growth of black carbon emissions in India. Geophysical Research Letters 2008, 35(2). DOI:10.1029/2007GL032333.
Reddy MS, Venkataraman C (2002) Inventory of aerosol and sulphur dioxide emissions from India. Part II—biomass combustion. Atmos Environ 36(4):699–712
ARAI.: The Automotive Research Association of India, 2007. Emission Factor Development for Indian Vehicles, As a Part of Ambient Air Quality Monitoring and Emission Source Apportionment Studies. AFL/2006‐07/IOCL/Emission Factor Project/2007.
Baidya S (2008) Trace Gas and particulate matter emissions from road transportation in India: quantification of current and future levels. Reports in University of Stuttgart, Stuttgart
Bansal G, Bandivadekar A (2013) OVERVIEW OF INDIA’S VEHICLE EMISSIONS CONTROL PROGRAM. ICCT, Beijing, Berlin, Brussels, San Francisco, Washington
Baidya S, Borken-Kleefeld J (2009) Atmospheric emissions from road transportation in India. Energy Policy 37(10):3812–3822
Gustafsson Ö, Kruså M, Zencak Z, Sheesley RJ, Granat L, Engström E, Praveen P, Rao P, Leck C, Rodhe H (2009) Brown clouds over South Asia: biomass or fossil fuel combustion? Science 323(5913):495–498
Franco V, Kousoulidou M, Muntean M, Ntziachristos L, Hausberger S, Dilara P (2013) Road vehicle emission factors development: A review. Atmos Environ 70:84–97
Sawyer RF, Harley RA, Cadle S, Norbeck J, Slott R, Bravo H (2000) Mobile sources critical review: 1998 NARSTO assessment. Atmos Environ 34(12):2161–2181
Central Pollution Control Board MoEF (2011) Air Quality Monitoring, Emission Inventory and Source Apportionment Study for Indian Cities. Ministry of Environment & Forests: India
Ramachandra T (2009) Emissions from India’s transport sector: Statewise synthesis. Atmos Environ 43(34):5510–5517
Nagpure AS, Sharma K, Gurjar BR (2013) Traffic induced emission estimates and trends (2000–2005) in megacity Delhi. Urban Climate 4:61–73
Sahu SK, Beig G, Parkhi N (2014) Critical emissions from the largest on-road transport network in south Asia. Aerosol Air Qual Res 14(1):135–144
Ministry of Road Transport and Highways I (2012) India road transport year book 2009–2011. Ministry of Road Transport and Highways (India), New Delhi, India
EPA U: Report to Congress on black carbon. US Environmental Protection Agency, Washington, DC. 2012, EPA-450/R-12-001 388pp.
Bai S, Eisinger D, Niemeier D: MOVES vs. EMFAC (2009) A Comparison of Greenhouse Gas Emissions Using Los Angeles County. In: Transportation Research Board 88th Annual Meeting, Paper: Washington DC. 09–0692.
Das S, Schmoyer R, Harrison G, Hausker K (2001) Prospects of inspection and maintenance of two-wheelers in India. J Air Waste Manage Assoc 51(10):1391–1400
Kojima M, Brandon C, Shah JJ: Improving urban air quality in South Asia by reducing emissions from two-stroke engine vehicles. In.: World Bank; 2000
Cohen JB, Wang C: Estimating global black carbon emissions using a top‐down Kalman Filter approach. J Geophysical Res Atmospheres 2014 199;307-323
Randall, D.A., R.A. Wood, S. Bony, R. Colman, T. Fichefet, J. Fyfe, V. Kattsov, A. Pitman, J. Shukla, J. Srinivasan, R.J. Stouffer, A. Sumi, K.E. Taylor, 2007: Cilmate Models and Their Evaluation. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor, H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Ministry of Shipping RTH, Government of India; ARAI.: 2007.
Mondt JR (2000) Cleaner Cars: The history and technology of emission control since the 1960s; Society of Automotive Engineers, Inc.
Zelenka P, Cartellieri W, Herzog P (1996) Worldwide diesel emission standards, current experiences and future needs. Appl Catal B Environ 10(1):3–28
Faiz A, Weaver CS, Walsh MP (1996) Air pollution from motor vehicles standards and technologies for controlling emissions. World Bank, Washington, D.C
Minjares R, Blumberg K, Posada Sanchez F (2013) Alignment of policies to maximize the climate benefits of diesel vehicles through control of particulate matter and black carbon emissions. Energy Policy 54:54–61
Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, AlMazroa MA, Amann M, Anderson HR, Andrews KG (2013) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2224–2260
Ghose MK, Paul R, Banerjee S (2004) Assessment of the impacts of vehicular emissions on urban air quality and its management in Indian context: the case of Kolkata (Calcutta). Environ Sci Pol 7(4):345–351
Sydbom A, Blomberg A, Parnia S, Stenfors N, Sandström T, Dahlen S (2001) Health effects of diesel exhaust emissions. Eur Respir J 17(4):733–746
Morgan W, Reger R, Tucker D (1997) Health effects of diesel emissions. Ann Occup Hyg 41(6):643–658
Klocke U (2000) Conditions of environmental mobility decisions: environmental protection through government action, at the individual. In: Scholl W, Sydow H (eds) Association for European transport and contributors 2009 16 modal choice and when buying a car. Mobility in adolescence and adulthood, Waxmann, Münster
Kruger N, Pareigis J: Influencing Car Buying Decisions from an Environmental Perspective-A Conceptual Framework Based on Real Option Analysis. In: European Transport Conference, 2009: Netherlands 2009
Joshi N, Rao P: Environment Friendly Car: Challenges ahead in India. Global J Manage Business Res 2013, 13(4):11-19.
Laffel N (2006) Promoting Public Transportation for Sustainable Development. Thesis, Princeton University