Sampling and interpolating sequences for multiband-limited functions and exponential bases on disconnected sets

Springer Science and Business Media LLC - Tập 3 - Trang 597-615 - 1997
Yurii I. Lyubarskii1,2, Kristian Seip1
1Department of Mathematical Sciences, The Norwegian Institute of Technology, Trondheim, Norway
2Institute for Low Temperatures Physics & Engineering, Kharkov, Ukraine

Tài liệu tham khảo

Agmon, S. (1951). Functions of exponential type in an angle and singularities of Taylor series.Trans. Amer. Math. Soc. 70, 492–508. Avdonin, S. (1974). On Riesz bases from exponentials inL 2.Vestnik LGU 13, 5–12. Benedetto, J.J. (1992). Irregular sampling and frames. InWavelets: A Tutorial. C. K. Chui, Ed., San Diego, 445–507. Beurling, A. (1989).The Collected Works of Arne Beurling. L. Carleson, P. Malliavin, J. Neuberger, and J. Wermer, Eds., Birkhäuser, Boston, vol. 2 351–366. Bezuglaja, L. and Katsnelson, V. (1993). The sampling theorem for functions limited multi-band spectrum I. Z.Anal. Anwendungen. 12 511–534. Cartwright, M. (1936). On certain integral functions of order l.Quarterly J. Math. 7, 46–55. Duffin, R.J. and Schaeffer, A.C. (1952). A class of nonharmonic Fourier series.Trans. Amer. Math. Soc. 72(2), 341–366. Gohberg. I.C. and Krein, M.G. (1969).Introduction in the Theory of Linear Nonselfadjoint Operators. Nauka, Moscow (Russian); English translation,Am. Math. Soc., Providence, 1969. Gröchenig, K. and Razafinjatovo, H. On Landau’s necessary density conditions for sampling and interpolation of bandlimited functions.J. London Math. Soc. To appear. Higgins, J.R. (1985). Five short stories about the cardinal series.Bull. Am. Math. Soc. 12, 45–89. Higgins, J.R. (1994). Sampling theory for Paley-Wiener spaces in the Riesz basis setting.Proc. Royal Irish Academy,94A, 219–236. Kadets, M.I. (1964). The exact value of the Paley-Wiener constant.Sov. Math. Dokl. 155, 1253–1254. Karlovich, Yu.I. and Spitkovsky, I.M. (1990). Factorization of almost periodic matrix functions and the Noether theory for certain classes of equations of convolution type.Izv. Akad. Nauk SSSR, Ser. Mat. 53, 276–308 (Russian); English translation inMathematics of the USSSR, Izvestiya 34, 281–316. Katsnelson, V.E. (1996). Sampling and interpolation for functions with multi-band spectrum: the mean periodic continuation method.Z. Anal. Anwendungen,15, 91–132 Khrushchev, S.V., Nikolskii, N.K. and Pavlov, B.S. (1981). Unconditional bases of exponentials and reproducing kernels. InComplex Analysis and Spectral Theory. V. P. Havin and N. K. Nikolskii, Eds., Lecture Notes in Math.864, Springer-Verlag, Berlin/Heidelberg, 214–335. Kohlenberg, A. (1953). Exact interpolation of band-limited functions.J. Appl. Phys. 24(12), 1432–1436. Landau, H.J. (1967). Necessary density conditions for sampling and interpolation of certain entire functions.Acta Math. 117, 37–52. Landau, H.J. (1967). Sampling, data transmission, and the Nyquist rate.Proc. IEEE. 55, 1701–1706. Levin, B.Ya. (1961). On bases of exponential functions inL 2(−π, π).Khar’kov. Gos. Univ. Uchen. Zap 115=Zap. Mat. Otdel. Fiz.-Mat. Fak. i Khar’kov Mat. Obsch. ser.4,27, 39–48 (Russian). Levin, B.Ya. (1969). Interpolation by entire functions of exponential type.Mat. Fiz. i Funktsional. Anal. Vyp. 1, 136–146 (Russian). Levin, B.Ya. (1956).Distribution of zeroes of entire functions. GITTL, Moscow; English transl.Am. Math. Soc., Providence, R.I., 1964, 1980. Levin, B.Ya. (1979). Lectures on entire functions.Am. Math. Soc., Providence, RI. Lyubarskii, Yu. and Seip, K. (1997). Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt’s (A p) condition.Revista mat. iberoamericana. To appear. Lyubarskii, Yu.I. and Spitkovsky, I.M. (1996). Sampling and interpolation for a lacunary spectrum.Proc. Edinburgh Math. Soc. 126A, 77–87. Nikolskii, N.K. (1986).Lectures on the Shift Operator. Springer-Verlag, Berlin. Nikolskii, N.K. Bases of exponentials and values of reproducing kernels, Dokl. Acad. Nauk SSSR, v.252, 1316–1320 (Russian) Paley, R.E.A.C. and Wiener, N. (1934).Fourier Transforms in the Complex Domain, Amer. Math. Soc. Colloq. Publ., vol. 19, American Mathematical Society, New York. Plancherel, A. and Pólya, G. (1937). Fonctions entières et intégrales de Fourier multiples.Comm. Math. Helv. 9, 224–248. Pavlov, B.S. (1979). Basicity of an exponential system and Muckenhoupt’s condition.Sov. Math. Dokl. 20, 655–659. Ramanathan, J. and Steger, T. (1995). Incompleteness of sparse coherent states.J. Appl. Comp. Harm. Anal. 2, 148–153. Seip, K. (1995). A simple construction of exponential bases inL 2 of the union of several intervals.Proc. Edinburgh Math. Soc. 38, 171–177. Seip, K. (1995). On the connection between exponential bases and certain related sequences inL 2(−π, π).J. Funct. Anal. 130, 131–160. Young, R.M. (1980).An Introduction to Nonharmonic Fourier Series. Academic Press, New York.