A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties

Water Resources Research - Tập 47 Số 12 - 2011
Michael L. Roderick1, Graham D. Farquhar2
1Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
2Research School of Biology, Australian National University, Canberra, ACT, Australia

Tóm tắt

We use the Budyko framework to calculate catchment‐scale evapotranspiration (E) and runoff (Q) as a function of two climatic factors, precipitation (P) and evaporative demand (Eo = 0.75 times the pan evaporation rate), and a third parameter that encodes the catchment properties (n) and modifies how P is partitioned between E and Q. This simple theory accurately predicted the long‐term evapotranspiration (E) and runoff (Q) for the Murray‐Darling Basin (MDB) in southeast Australia. We extend the theory by developing a simple and novel analytical expression for the effects on E and Q of small perturbations in P, Eo, and n. The theory predicts that a 10% change in P, with all else constant, would result in a 26% change in Q in the MDB. Future climate scenarios (2070–2099) derived using Intergovernmental Panel on Climate Change AR4 climate model output highlight the diversity of projections for P (±30%) with a correspondingly large range in projections for Q (±80%) in the MDB. We conclude with a qualitative description about the impact of changes in catchment properties on water availability and focus on the interaction between vegetation change, increasing atmospheric [CO2], and fire frequency. We conclude that the modern version of the Budyko framework is a useful tool for making simple and transparent estimates of changes in water availability.

Từ khóa


Tài liệu tham khảo

10.1016/S0022‐1694(02)00101‐4

Bagrov N. A., 1953, Mean long‐term evaporation from land surface [in Russian], Meteorol. Gidrol., 10, 20

10.1071/BT01019

10.1016/j.jhydrol.2004.12.010

10.1038/23845

Budyko M. I., 1948, Evaporation Under Natural Conditions

Budyko M. I., 1974, Climate and Life

10.1080/08120090802266535

10.1623/hysj.51.4.613

Chiew F. H. S. et al. (2008) Rainfall‐runoff modelling across the Murray‐Darling Basin technical report Commonw. Sci. and Ind. Res. Organ. Canberra.

10.1029/2008WR007338

10.1007/s00477‐010‐0424‐x

10.1016/S0022‐1694(98)00293‐5

Commonwealth Scientific and Industrial Research Organisation (CSIRO)(2008) Water availability in the Murray‐Darling Basin report Canberra.

10.1016/S0022‐1694(00)00384‐X

Costin A. B., 1954, A Study of the Ecosystems of the Monaro Region

10.1175/JCLI3816.1

10.1111/j.1365‐2486.2006.01240.x

10.5194/hess‐11‐983‐2007

10.1111/j.1365‐2486.2008.01746.x

10.1016/j.jhydrol.2010.03.020

10.1029/91JD02156

10.1016/S0309‐1708(99)00019‐6

10.1146/annurev.arplant.48.1.609

10.1126/science.278.5342.1411

Fu B. P., 1981, On the calculation of the evaporation from land surface [in Chinese], Sci. Atmos. Sin., 5, 23

10.1038/nature04504

10.1029/2008WR007308

10.1146/annurev.energy.25.1.441

10.1175/JCLI3990.1

10.1029/2004GL019846

10.1126/science.1091390

10.1126/science.1119282

10.1175/2009JCLI2681.1

10.1175/2009JHM1158.1

10.22499/2.5804.003

10.1007/s10584‐007‐9324‐6

10.1175/1520‐0442(1999)012<1911:ASFFET>2.0.CO;2

10.1029/2006JD007182

10.1016/0022‐1694(87)90054‐0

10.1029/2008WR007333

10.1002/hyp.6485

Lim W. H., 2009, An Atlas of the Global Water Cycle: Based on the IPCC AR4 Models

10.1641/0006‐3568(2004)054[0731:PNLOER]2.0.CO;2

10.1029/2007GL031524

10.1029/2008GL035627

Mezentsev V. S., 1955, More on the calculation of average total evaporation [in Russian], Meteorol. Gidrol., 5, 24

10.1029/93WR01934

10.1029/94WR00586

10.1029/2001WR000760

10.1080/02626668209491113

10.1111/j.1442‐9993.1986.tb01406.x

10.1016/0022‐1694(64)90022‐8

10.1029/2003JD004347

10.1029/2004WR003697

Potter N. J. F. H. S.Chiew A. J.Frost R.Srikanthan T. A.McMahon M. C.Peel andJ. M.Austin(2008) Characterisation of recent rainfall and runoff in the Murray‐Darling Basin technical report Commonw. Sci. and Ind. Res. Organ. Canberra.

10.1016/j.jhydrol.2009.11.025

10.1175/JCLI4181.1

10.1002/joc.1061

Roderick M. L. andG. D.Farquhar(2006) A physical analysis of changes in Australian pan evaporation technical report Land and Water Aust. Canberra.

10.1046/j.1365‐2435.2000.00438.x

10.1029/2007GL031166

10.1111/j.1749‐8198.2008.00213.x

10.1111/j.1749‐8198.2008.00214.x

Rodriguez‐Iturbe I., 2004, Ecohydrology of Water Controlled Ecosystems: Plants and Soil Moisture Dynamics

Rose C. W.(2004) An Introduction to the Environmental Physics of Soil Water and Watersheds Cambridge Univ. Press Cambridge U. K.

10.1029/2006GL027114

10.1029/2006JD007712

10.1029/2000WR900330

Schaake J. C., 1989, New Directions for Surface Water Modeling, 343

10.1002/qj.434

Stanhill G.(1976) The CIMO international evaporimeter comparisons WMO Rep. 449 World Meteorol. Organ. Geneva Switzerland.

10.1016/S0168‐1923(02)00132‐6

Sun F.(2007) Study on watershed evapotranspiration based on the Budyko hypothesis [in Chinese] Ph.D. thesis Tsinghua Univ. Beijing.

10.1029/2010WR009829

Turc L., 1954, Le bilan d'eau des sols. Relation entre les precipitations, l'évaporation et l'ecoulement, Ann. Agron., 5, 491

van Dijk M. H., 1985, Reduction in evaporation due to the bird screen used in the Australian class A pan evaporation network, Aust. Meteorol. Mag., 33, 181

10.1038/282424a0

10.1029/2006GL027657

10.1029/2006WR005224

10.1029/2008WR006948

10.1029/2007WR006135

10.1029/2000WR900325

10.1029/2003WR002710

10.1029/2007WR006711