Production of cellulosic ethanol from steam-exploded Eucalyptus urograndis and sugarcane bagasse at high total solids and low enzyme loadings

Sustainable Chemical Processes - Tập 4 - Trang 1-9 - 2016
Luana M. Chiarello1, Carlos Eduardo A. Ramos1, Priscila V. Neves1, Luiz P. Ramos1,2
1Department of Chemistry, Research Center in Applied Chemistry (CEPESQ), Federal University of Paraná, Curitiba, Brazil
2Department of Chemistry, INCT in Energy and Environment, Federal University of Paraná, Curitiba, Brazil

Tóm tắt

Cellulosic ethanol is one of the most important biotechnological products to mitigate the consumption of fossil fuels and to increase the use of renewable resources for fuels and chemicals. By performing this process at high total solids (TS) and low enzyme loadings (EL), one can achieve significant improvements in the overall cellulosic ethanol production process. In this work, steam-exploded materials were obtained from Eucalyptus urograndis chips and sugarcane bagasse to be subsequently used for enzymatic hydrolysis at high TS (20 wt%) and relatively low EL (13.3 FPU g−1 TS of Cellic CTec3 from Novozymes). Also, the fermentability of their corresponding hydrolysates was tested using an industrial strain of Saccharomyces cerevisiae (Thermosacc Dry from Lallemand). Enzymatic hydrolysis of steam-treated E. urograndis reached 125 g L−1 of glucose in 72 h, while steam-treated bagasse gave yields 25 % lower. Both substrate hydrolysates were easily converted to ethanol, giving yields above 25 g L−1 and productivities of 2.3 g L−1 h−1 for eucalypt and 2.2 g L−1 h−1 for bagasse after only 12 h of fermentation. Under the conditions used in this study, sugarcane bagasse glucans showed the potential to boost the ethanol production from sugarcane culms by 31 %, from the 80 L t−1 of first generation to a total production of 105 L t−1. On the other hand, E. urograndis plantations are able to achieve cellulosic ethanol productivities of 2832.2 L ha−1 year−1, which was 57.8 % higher than the projected value of 1794.5 L ha−1 year−1 that was obtained for sugarcane bagasse.

Tài liệu tham khảo

Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sust Energ Rev 41:550–567 Ramos LP, Silva L, Ballem AC, Pitarelo AP, Chiarello LM, Silveira MHL (2015) Enzymatic hydrolysis of steam-exploded sugarcane bagasse using high total solids and low enzyme loadings. Bioresour Technol 175:195–202 Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2:26–40 Mohanram S, Amat D, Choudhary J, Arora A, Nain L (2013) Novel perspectives for evolving enzyme cocktails for lignocellulose hydrolysis in biorefineries. Sustain Chem Process 1:15 Carvalho DM, Sevastyanova O, Penna LS, Silva BP, Lindström ME, Colodette JL (2015) Assessment of chemical transformations in eucalyptus, sugarcane bagasse and straw during hydrothermal, dilute acid, and alkaline pretreatments. Ind Crops Prod 73:118–126 Oliveira IS, Chandel AK, Silva MB, Silva SS (2013) Environmental assessment of residues generated after consecutive acid-base pretreatment of sugarcane bagasse by advanced oxidative process. Sustain Chem Process 1:20 Lima MA, Lavorente GB, Silva HKP, Bragatto J, Rezende CA, Bernardinelli OD et al (2013) Effects of pretreatment on morphology, chemical composition and enzymatic digestibility of eucalyptus bark: a potentially valuable source of fermentable sugars for biofuel production—part 1. Biotechnol Biofuels 6:75 Barbosa LCA, Maltha CRA, Cruz MP (2005) Composição química de extrativos lipofílicos e polares de madeira de Eucalyptus grandis. Ciência Engenharia 15(2):13–20 Kullan ARK, van Dyk MM, Jones N, Kanzler A, Bayley A, Myburg AA (2012) High-density genetic linkage maps with over 2400 sequence-anchored DArT markers for genetic dissection in an F2 pseudo-backcross of Eucalyptus grandis × E. urophylla. Tree Genet Genomes 8:163–175 Stanturf JA, Vance ED, Fox TR, Kirst M (2013) Eucalyptus beyond its native range: environmental issues in exotic bioenergy plantations. Int J For Res. doi:10.1155/2013/463030 Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554 Clark JH, Luque R, Matharu AS (2012) Green chemistry, biofuels, and biorefinery. Annu Rev Chem Biomol Eng 3:183–207 Maity SK (2015) Opportunities, recent trends and challenges of integrated biorefinery: part I. Renew Sust Energ Rev 43:1427–1445 Carrasco C, Baudel HM, Sendelius J, Modig T, Roslander C, Galbe M et al (2010) SO2-catalyzed steam pretreatment and fermentation of enzymatically hydrolyzed sugarcane bagasse. Enzyme Microb Technol 46(2):64–73 Ramos LP (2003) The chemistry involved in the pretreatment of lignocellulosic materials. Quím Nova 26(6):863–871 Rocha GJM, Gonçalves AR, Oliveira BR, Olivares EG, Rossel CEV (2012) Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind Crops Prod 35(1):274–279 Pitarelo AP, Silva TA, Peralta-Zamora PG, Ramos LP (2012) Efeito do teor de umidade sobre o pré-tratamento a vapor e a hidrólise enzimática do bagaço de cana-de-açúcar. Quím Nova 35(8):1502–1509 Schütt F, Westereng B, Horn SJ, Puls J, Saake B (2012) Steam refining as an alternative to steam explosion. Bioresour Technol 111:476–481 Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Progress 19(4):1109–1117 Modenbach AA, Nokes SE (2013) Enzymatic hydrolysis of biomass at high-solids loadings–a review. Biomass Bioenergy 56:526–544 Roche CM, Dibble CJ, Knutsen JS, Stickel JJ, Liberatore MW (2009) Particle concentration and yield stress of biomass slurries during enzymatic hydrolysis at high-solids loadings. Biotechnol Bioeng 104(2):290–300 Yang J, Zhang X, Yong Q, Yu S (2011) Three-stage enzymatic hydrolysis of steam-exploded corn stover at high substrate concentration. Bioresour Technol 102(7):4905–4908 Hoyer K, Galbe M, Zacchi G (2013) Influence of fiber degradation and concentration of fermentable sugars on simultaneous saccharification and fermentation of high-solids spruce slurry to ethanol. Biotechnol Biofuels 6:145 Neves PV, Pitarelo AP, Ramos LP (2016) Production of cellulosic ethanol from sugarcane bagasse by steam explosion: effect of extractives content, acid catalysis and different fermentation technologies. Bioresour Technol 208:184–194 Szczerbowski D, Pitarelo AP (2014) Zandoná Filho A, Ramos LP. Sugarcane biomass for biorefineries: comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw. Carbohydr Polym 114:95–101 Pinto PC, Evtuguin DV (2005) Pascoal Neto C. Structure of hardwood glucuronoxylans: modifications and impact on pulp retention during wood kraft pulping. Carbohydr Polym 60(4):489–497 Schuchardt U, Ribeiro ML, Gonçalves AR (2001) A indústria petroquímica no próximo século: como substituir o petróleo como matéria-prima? Quim Nova 24(2):247–251 Aguiar RS, Silveira MHL, Pitarelo AP, Corazza ML, Ramos LP (2013) Kinetics of enzyme-catalyzed hydrolysis of steam-exploded sugarcane bagasse. Bioresour Technol 147:416–423 Martin-Sampedro R, Revilla E, Villar JC (2014) Enhancement of enzymatic saccharification of Eucalyptus globulus: steam explosion versus steam treatment. Bioresour Technol 167:186–191 Martins LHS, Rabelo SS, Costa AC (2015) Effects of the pretreatment method on high solids enzymatic hydrolysis and ethanol fermentation of the cellulosic fraction of sugarcane bagasse. Bioresour Technol 191:312–321 Horn SJ, Eijsink VG (2010) Enzymatic hydrolysis of steam-exploded hardwood using short processing times. Biosci Biotechnol Biochem 74(6):1157–1163 Romaní A, Ruiz HA, Pereira FB, Teixeira JA, Domingues L (2014) Integrated approach for effective bioethanol production using whole slurry from autohydrolyzed Eucalyptus globulus wood at high-solid loadings. Fuel 135:482–491 Liu ZH, Qin L, Zhu JQ, Li BZ, Yuan YJ (2014) Simultaneous saccharification and fermentation of steam-exploded corn stover at high glucan loading and high temperature. Biotechnol Biofuels 7:167 Ramburan S (2015) Interactions affecting the optimal harvest age of sugarcane in rainfed regions of South Africa. Field Crops Res 183:276–281 Almeida AC, Soares JV (2003) Comparação entre uso de água em plantações de Eucalyptus grandis e Floresta Ombrófila densa (Mata Atlântica) na costa leste do Brasil. Revista Árvore 27(2):159–170 Comércio Ambiental (2014) http://www.comercioambiental.com.br/mudas/eucalipto/. Accessed 19 Feb 2016 Dougherty D, Wright J (2012) Silviculture and economic evaluation of eucalypt plantations in the southern US. Bioresources 7(2):1994–2001 Leal MRLV, Nogueira LAH (2014) The sustainability of sugarcane ethanol: the impacts of the production model. Chem Eng Trans 37:835–840 Wrobel-Tobiszewska A, Boersma M, Sargison J, Adams P, Jarick S (2015) An economic analysis of biochar production using residues from Eucalypt plantations. Biomass Bioenergy 81:177–182 Wu J, Liu Z, Huang G, Chen D, Zhang W, Shao Y et al (2015) Response of soil respiration and ecosystem carbon budget to vegetation removal in Eucalyptus plantations with contrasting ages. Sci Rep 4:6262. doi:10.1038/srep06262 Gonzalez R, Treasure T, Phillips R, Jameel H, Saloni D, Abt R et al (2011) Converting Eucalyptus biomass into ethanol: financial and sensitivity analysis in a co-current dilute acid process. Part II. Biomass Bioenergy 35(2):767–772 Cana Online (2015) http://www.canaonline.com.br/conteudo/comercio-de-bagaco-de-cana-virou-bom-negocio-para-as-usinas.html#.VsNt8rQrKt9. Accessed 16 Feb 2016 Secretaria de Estado da Agricultura e do Abastecimento do Estado do Paraná (2015) http://www.agricultura.pr.gov.br/arquivos/File/deral/florestais/Flor2015abr.xls. Accessed 21 Feb 2016 Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008a) Determination of extractives in biomass. Laboratory analytical procedure: Technical Report: NREL/TP-510-42619 National Renewable Energy Laboratory, Golden, Colorado, USA Sluiter A, Hames B, Hyman D, Payne C, Ruiz R, Scarlata C, et al (2008b) Determination of total solids in biomass and total dissolved solids in liquid process samples. Laboratory analytical procedure: Technical Report: NREL/TP-510-42621 National Renewable Energy Laboratory, Golden, Colorado, USA Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008c) Determination of ash in biomass. Laboratory Analytical Procedure: Technical Report NREL/TP-510-42622. National Renewable Energy Laboratory, Golden, Colorado, USA Hyman D, Sluiter A, Crocker D, Johnson D, Sluiter J, Black S, et al (2008) Determination of Acid soluble lignin concentration curve by UV-Vis Spectroscopy. Laboratory analytical procedure: Technical Report: NREL/TP-510-42617 National Renewable Energy Laboratory, Golden, Colorado, USA Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, et al (2012) Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure: Technical Report NREL/TP-510-42618. National Renewable Energy Laboratory, Golden, Colorado, USA Pitarelo AP, Fonseca SF, Chiarello LM, Gírio FM, Ramos LP (2016) Ethanol production from sugarcane bagasse using phosphoric acid-catalyzed steam explosion. J Braz Chem Soc. doi:10.5935/0103-5053.20160075 Overend RP, Chornet E (1987) Fractionation of lignocellulosics by steam-aqueous pretreatments. Phil Trans R Soc A 321(1561):523–536 Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268