The Weyl–von Neumann theorem for skew-symmetric operators

Springer Science and Business Media LLC - Tập 14 - Trang 1-12 - 2023
Qinggang Bu1, Sen Zhu2
1Aliyun School of Big Data, Changzhou University, Changzhou, People’s Republic of China
2Department of Mathematics, Jilin University, Changchun, People's Republic of China

Tóm tắt

We consider the diagonalization of self-adjoint operators in the infinite-dimensional orthogonal Lie algebra $$\mathcal O_C$$ , which consists of all bounded linear operators T on a separable, infinite-dimensional, complex Hilbert space $$\mathcal {H}$$ satisfying $$CTC = -T^*$$ , where C is a conjugation on $$\mathcal H$$ . First, we establish the Weyl–von Neumann Theorem in $$\mathcal {O}_C$$ , showing that each self-adjoint operator in $$\mathcal {O}_C$$ can be diagonalized in $$\mathcal {O}_C$$ up to arbitrarily small perturbations with respect to the Schatten p-norm, $$p\in (1,\infty )$$ . Second, for any $$n\ge 2$$ , we prove that n commuting self-adjoint operators in $$\mathcal {O}_C$$ can be diagonalized simultaneously in $$\mathcal {O}_C$$ up to arbitrarily small perturbations with respect to the Schatten n-norm. This is an $$\mathcal {O}_C$$ -analogue of Voiculescu’s result concerning the simultaneous diagonalization of commuting self-adjoint operators. Finally, as an application of the preceding results, we show that those irreducible ones constitute a norm dense subset of $$\mathcal {O}_C$$ .

Tài liệu tham khảo

Amara, Z., Oudghiri, M., Souilah, K.: On maps preserving skew symmetric operators. Filomat 36, 243–254 (2022) Benhida, C., Kliś-Garlicka, K., Ptak, M.: Skew-symmetric operators and reflexivity. Math. Slovaca 68(2), 415–420 (2018) Benhida, C., Chō, M., Ko, E., Lee, J.E.: On the generalized mean transforms of complex symmetric operators. Banach J. Math. Anal. 14(3), 842–855 (2020) Berg, I.D.: An extension of the Weyl–von Neumann theorem to normal operators. Trans. Am. Math. Soc. 160, 365–371 (1971) Bu, Q.G., Zhu, S.: The orthogonal Lie algebra of operators: ideals and derivations. J. Math. Anal. Appl. 489(1), 124134 (2020) Chen, Y., Koo, H., Lee, Y.J.: Ranks of complex skew symmetric operators and applications to Toeplitz operators. J. Math. Anal. Appl. 425(2), 734–747 (2015) Chu, C.-H.: Jordan structures in geometry and analysis. In: Cambridge Tracts in Mathematics, vol. 190. Cambridge University Press, Cambridge (2012) Conway, J.B.: A Course in Operator Theory. Graduate Studies in Mathematics, vol. 21. American Mathematical Society, Providence (2000) de la Harpe, P.: Classical Banach-Lie Algebras and Banach-Lie Groups of Operators in Hilbert Space. Lecture Notes in Mathematics, vol. 285. Springer-Verlag, Berlin (1972) Garcia, S.R., Prodan, E., Putinar, M.: Mathematical and physical aspects of complex symmetric operators. J. Phys. A Math. Gen. 47(35), 353001 (2014) Halmos, P.R.: Ten problems in Hilbert space. Bull. Am. Math. Soc. 76, 887–933 (1970) Halmos, P.R.: Irreducible operators. Mich. Math. J. 15, 215–223 (1968) Kato, T.: Perturbation of continuous spectra by trace class operators. Proc. Jpn. Acad. 33, 260–264 (1957) Kuroda, S.T.: On a theorem of Weyl–von Neumann. Proc. Jpn. Acad. 34, 11–15 (1958) Li, Q.H., Shen, J.H., Shi, R.: A generalization of the Voiculescu theorem for normal operators in semifinite von Neumann algebras. Adv. Math. 375, 107347 (2020) Li, C.G., Zhou, T.T.: Skew symmetry of a class of operators. Banach J. Math. Anal. 8(1), 279–294 (2014) Li, C.G., Zhu, S.: Skew symmetric normal operators. Proc. Am. Math. Soc. 141(8), 2755–2762 (2013) Radjavi, H., Rosenthal, P.: The set of irreducible operators is dense. Proc. Am. Math. Soc. 21, 256 (1969) Sikonia, W.: Essential, singular, and absolutely continuous spectra. Thesis (Ph.D.), University of Colorado at Boulder (1970) von Neumann, J.: Charakterisierung des Spektrums eines Integraloperators. Actualités Sci. Indust. 229, Hermann, Paris (1935) Voiculescu, D.: Some results on norm-ideal perturbations of Hilbert space operators. J. Oper. Theory 2(1), 3–37 (1979) Weyl, H.: Über beschränkte quadratische Formen deren Differenz vollstetig ist. Rend. Circ. Mat. Palermo 27, 373–392 (1909) Zagorodnyuk, S.M.: On a \(J\)-polar decomposition of a bounded operator and matrices of \(J\)-symmetric and \(J\)-skew-symmetric operators. Banach J. Math. Anal. 4(2), 11–36 (2010) Zagorodnyuk, S.M.: On the complex symmetric and skew-symmetric operators with a simple spectrum. Symmetry Integr. Geom. Methods Appl. 7, 1–9 (2011) Zhu, S.: Skew symmetric weighted shifts. Banach J. Math. Anal. 9(1), 253–272 (2015) Zhu, S.: Complex symmetric operators, skew symmetric operators and reflexivity. Oper. Matrices 11(4), 941–951 (2017)